Advertisement

The Conjugacy Problem in Free Solvable Groups and Wreath Products of Abelian Groups is in TC0

  • Alexei Miasnikov
  • Svetla Vassileva
  • Armin Weiß
Article
Part of the following topical collections:
  1. Computer Science Symposium in Russia

Abstract

We show that the conjugacy problem in a wreath product AB is uniform-TC0-Turing-reducible to the conjugacy problem in the factors A and B and the power problem in B. If B is torsion free, the power problem in B can be replaced by the slightly weaker cyclic submonoid membership problem in B. Moreover, if A is abelian, the cyclic subgroup membership problem suffices, which itself is uniform-AC0-many-one-reducible to the conjugacy problem in AB. Furthermore, under certain natural conditions, we give a uniform TC0 Turing reduction from the power problem in AB to the power problems of A and B. Together with our first result, this yields a uniform TC0 solution to the conjugacy problem in iterated wreath products of abelian groups – and, by the Magnus embedding, also in free solvable groups.

Keywords

Wreath products Conjugacy problem Word problem TC0 Free solvable group 

References

  1. 1.
    Barrington, D.A.M., Immerman, N., Straubing, H.: On uniformity within NC1. J. Comput. Syst. Sci. 41(3), 274–306 (1990).  https://doi.org/10.1016/0022-0000(90)90022-D CrossRefMATHGoogle Scholar
  2. 2.
    Craven, M.J., Jimbo, H.C.: Evolutionary algorithm solution of the multiple conjugacy search problem in groups, and its applications to cryptography. Groups Complex. Cryptol. 4, 135–165 (2012).  https://doi.org/10.1515/gcc-2016-0012 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Dehn, M.: Über unendliche diskontinuierliche Gruppen. Math. Ann. 71(1), 116–144 (1911).  https://doi.org/10.1007/BF01456932 MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Diekert, V., Myasnikov, A. G., Weiß, A.: Conjugacy in baumslag’s group, generic case complexity, and division in power circuits. In: Latin American Theoretical Informatics Symposium, pp 1–12 (2014)Google Scholar
  5. 5.
    Grigoriev, D., Shpilrain, V.: Authentication from matrix conjugation. Groups Complex. Cryptol. 1, 199–205 (2009)MathSciNetMATHGoogle Scholar
  6. 6.
    Gul, F., Sohrabi, M., Ushakov, A.: Magnus embedding and algorithmic properties of groups F/N (d). Trans. Amer. Math. Soc. 369(9), 6189–6206 (2017).  https://doi.org/10.1090/tran/6880 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Hesse, W.: Division is in uniform TC0. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001, Proceedings, Lecture Notes in Computer Science, vol. 2076, pp 104–114. Springer (2001)Google Scholar
  8. 8.
    Hesse, W., Allender, E., Barrington, D. A. M.: Uniform constant-depth threshold circuits for division and iterated multiplication. JCSS 65, 695–716 (2002)MathSciNetMATHGoogle Scholar
  9. 9.
    Kargapolov, M. I., Remeslennikov, V. N.: The conjugacy problem for free solvable groups. Algebra i Logika Sem. 5(6), 15–25 (1966)MathSciNetMATHGoogle Scholar
  10. 10.
    Ko, K.H., Lee, S.J., Cheon, J.H., Han, J.W., Kang, J.S., Park, C.: New public-key cryptosystem using braid groups. In: Advances in cryptology—CRYPTO 2000 (Santa Barbara, CA), Lecture Notes in Computer Science.  https://doi.org/10.1007/3-540-44598-6_10, vol. 1880, pp 166–183. Springer, Berlin (2000)
  11. 11.
    König, D., Lohrey, M.: Evaluation of circuits over nilpotent and polycyclic groups. Algorithmica (2017).  https://doi.org/10.1007/s00453-017-0343-z
  12. 12.
    Krebs, A., Lange, K., Reifferscheid, S.: Characterizing TC0 in terms of infinite groups. Theory Comput. Syst. 40 (4), 303–325 (2007).  https://doi.org/10.1007/s00224-006-1310-2 MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Lange, K., McKenzie, P.: On the complexity of free monoid morphisms. In: Chwa, K., Ibarra, O.H. (eds.) ISAAC 1998, Proceedings, Lecture Notes in Computer Science.  https://doi.org/10.1007/3-540-49381-6_27, vol. 1533, pp 247–256. Springer (1998)
  14. 14.
    Maciel, A., Thérien, D.: Threshold circuits of small majority-depth. Inf. Comput. 146(1), 55–83 (1998).  https://doi.org/10.1006/inco.1998.2732 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Magnus, W.: On a theorem of Marshall Hall. Ann. of Math. (2) 40, 764–768 (1939)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Matthews, J.: The conjugacy problem in wreath products and free metabelian groups. Trans. Amer. Math. Soc. 121, 329–339 (1966)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Miller, C.F. III: On group-theoretic decision problems and their classification, Ann. of Math. Studies, vol. 68. Princeton University Press, NJ (1971)Google Scholar
  18. 18.
    Myasnikov, A., Roman’kov, V., Ushakov, A., Vershik, A.: The word and geodesic problems in free solvable groups. Trans. Amer. Math. Soc. 362(9), 4655–4682 (2010).  https://doi.org/10.1090/s0002-9947-10-04959-7 MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Myasnikov, A., Vassileva, S., Weiß, A.: The conjugacy problem in free solvable groups and wreath products of abelian groups is in T C 0. In: CSR 2017.  https://doi.org/10.1007/978-3-319-58747-9_20, pp 217–231. Proceedings (2017)
  20. 20.
    Myasnikov, A., Vassileva, S., Weiss, A.: Log-Space Complexity of the Conjugacy Problem in Wreath Products, chap. 12, pp. 215–236. World Scientific (2017).  https://doi.org/10.1142/9789813204058_0012
  21. 21.
    Myasnikov, A., Weiß, A.: TC0 circuits for algorithmic problems in nilpotent groups. ArXiv e-prints (2017)Google Scholar
  22. 22.
    Remeslennikov, V., Sokolov, V. G.: Certain properties of the Magnus embedding. Algebra i logika 9(5), 566–578 (1970)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Robinson, D.: Parallel algorithms for group word problems. Ph.D. thesis, University of California, San Diego (1993)Google Scholar
  24. 24.
    Shpilrain, V., Zapata, G.: Combinatorial group theory and public key cryptography. Appl. Algebra Engrg. Comm. Comput. 17, 291–302 (2006)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Vassileva, S.: Polynomial time conjugacy in wreath products and free solvable groups. Groups Complex. Cryptol. 3(1), 105–120 (2011).  https://doi.org/10.1515/GCC.2011.005 MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
  27. 27.
    Waack, S.: The parallel complexity of some constructions in combinatorial group theory, pp 492–498. Springer-Verlag New York, Inc., New York (1990)Google Scholar
  28. 28.
    Wang, L., Wang, L., Cao, Z., Okamoto, E., Shao, J.: New constructions of public-key encryption schemes from conjugacy search problems. In: Information security and cryptology, Lecture Notes in Comput. Sci.  https://doi.org/10.1007/978-3-642-21518-6_1, vol. 6584, pp 1–17. Springer, Heidelberg (2011)
  29. 29.
    Weiß, A.: A logspace solution to the word and conjugacy problem of generalized Baumslag-Solitar groups. In: Algebra and computer science, Contemporary Mathematics, vol. 677, pp 185–212. American Mathematics Society, Providence (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Stevens Institute of TechnologyHobokenUSA
  2. 2.Champlain CollegeSt-LambertCanada
  3. 3.Universität StuttgartStuttgartGermany

Personalised recommendations