Theory of Computing Systems

, Volume 62, Issue 8, pp 1690–1714

# Revisiting Connected Vertex Cover: FPT Algorithms and Lossy Kernels

• R. Krithika
• Diptapriyo Majumdar
• Venkatesh Raman
Article

## Abstract

The Connected Vertex Cover problem asks for a vertex cover in a graph that induces a connected subgraph. The problem is known to be fixed-parameter tractable (FPT), and is unlikely to have a polynomial sized kernel (under complexity theoretic assumptions) when parameterized by the solution size. In a recent paper, Lokshtanov et al. [STOC 2017], have shown an α-approximate kernel for the problem for every α > 1, in the framework of approximate or lossy kernelization. In this work, we exhibit lossy kernels and FPT algorithms for Connected Vertex Cover for parameters that are more natural and functions of the input, and in some cases, smaller than the solution size. Our first result is a lossy kernel for Connected Vertex Cover parameterized by the size of a split deletion set. Let n denote the number of vertices in the input graph. We show that
• Connected Vertex Cover parameterized by the size k of a split deletion set admits an α-approximate kernel with $$\mathcal {O}(k+(2k+\lceil \frac {2\alpha -1}{\alpha -1} \rceil )^{\lceil \frac {2\alpha -1}{\alpha -1} \rceil })$$ vertices and an algorithm with $$\mathcal {O}(3^{k} n^{\mathcal {O}(1)})$$ running time.

• For the special case when the split deletion set is a clique deletion set, the algorithm runs in $${\mathcal O}(2^{k} n^{{\mathcal O}(1)})$$ time and the lossy kernel has $$\mathcal {O}(k + \lceil \frac {2\alpha -1}{\alpha -1} \rceil )$$ vertices.

To the best of our knowledge, this (approximate) kernel is one of the few lossy kernels for problems parameterized by a structural parameter (that is not solution size). We extend this lossy kernelization to Connected Vertex Cover parameterized by an incomparable parameter, and that is the size of a clique cover. We show that
• Connected Vertex Cover parameterized by the size k of a clique cover is W[1]-hard but admits an α-approximate kernel with $$\mathcal {O}(k \lceil \frac {2\alpha -1}{\alpha -1} \rceil )$$ vertices for every α > 1. This is one of the few problems that are not FPT but admit a lossy kernel.

Finally, we consider the size of a cluster deletion set as parameter. We show that
• Connected Vertex Cover parameterized by the size k of a cluster deletion set is FPT via an algorithm with running time $${\mathcal O}(4^{k} n^{{\mathcal O}(1)})$$. It also admits an α-approximate kernel with $$\mathcal {O}(k^{2}+\lceil \frac {2\alpha -1}{\alpha -1} \rceil \cdot \frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })$$ vertices for every α > 1.

• For the special case when the cluster deletion set is a degree-1 modulator, the FPT algorithm runs in $${\mathcal O}(3^{k} n^{{\mathcal O}(1)})$$ time and the lossy kernel has $$\mathcal {O}(k^{2}+\frac {k}{\alpha -1}+ \lceil \frac {\alpha }{\alpha -1} \rceil \cdot k^{\lceil \frac {\alpha }{\alpha -1} \rceil })$$ vertices.

## Keywords

Parameterized complexity Connected vertex cover Lossy kernelization Structural parameterization W-hardness

## References

1. 1.
Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs. Theor. Comput. Sci. 237(1-2), 123–134 (2000)
2. 2.
Bodlaender, H.L., Cygan, M., Kratsch, S., Nederlof, J.: Deterministic single exponential time algorithms for connectivity problems parameterized by Treewidth. Inf. Comput. 243, 86–111 (2015)
3. 3.
Bodlaender, H.L., Jansen, B.M.P.: Vertex cover kernelization revisited: upper and lower bounds for a refined parameter. Theory Comput. Syst. 63(2), 263–299 (2013)
4. 4.
Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discret. Math. 28(1), 277–305 (2014)
5. 5.
Boral, A., Cygan, M., Kociumaka, T., Pilipczuk, M.: A fast branching algorithm for cluster vertex deletion. Theory Comput. Syst. 58(2), 357–376 (2016)
6. 6.
Chen, J., Kanj, I.A., Jia, W.: Vertex cover: further observations and further improvements. J. Algorithms 41(2), 280–301 (2001)
7. 7.
Cygan, M.: Deterministic Parameterized Connected Vertex Cover. In: Proceedings of the 13Th Scandinavian Workshop on Algorithm Theory (SWAT), pp 95–106 (2012)Google Scholar
8. 8.
Cygan, M., Dell, H., Lokshtanov, D., Marx, D., Nederlof, J., Okamoto, Y., Paturi, R., Saurabh, S., Wahlström, M.: On problems as hard as CNF-SAT. ACM Trans. Algorithms 12(3), 41:1–41:24 (2016)
9. 9.
Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)
10. 10.
Cygan, M., Pilipczuk, M.: Split vertex deletion meets vertex cover: new fixed-parameter and exact exponential-time algorithms. Inf. Process. Lett. 113(5-6), 179–182 (2013)
11. 11.
Diestel, R.: Graph Theory, Graduate Text in Mathematics. Springer, Berlin (2012)Google Scholar
12. 12.
Dom, M., Lokshatanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)
13. 13.
Escoffier, B., Gourvès, L., Monno, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algoritms 8(1), 36–49 (2010)
14. 14.
Fomin, F., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
15. 15.
Garey, M.R., Johnson, D.S.: Computer and Intractability: A Guide to the Theory of NP-completeness. W. H. Freeman & Co., Bedford (1979)
16. 16.
Golumbic, M.C.: Algorithmic Graph Theory for Perfect Graphs. Springer, Berlin (2004)
17. 17.
Jansen, B.M.P.: The Power of Data Reduction: Kernels for Fundamental Graph Problems. PhD Thesis, Utrecht University, The Netherlands (2013)Google Scholar
18. 18.
Jansen, B.M.P., Fellows, M.R., Rosamond, F.A.: Towards fully multivariate algorithmics: parameter ecology and the deconstruction of computational complexity. Eur. J. Comb. 34(3), 541–566 (2013)
19. 19.
Jansen, B.M.P., Kratsch, S.: Data reduction for coloring problems. Inf. Comput. 231, 70–88 (2013)
20. 20.
Jansen, B.M.P., Raman, V., Vatshelle, M.: Parameter ecology for feedback vertex set. Tsinghua Sci. Technol. 19(4), 387–409 (2014)
21. 21.
Lokshtanov, D., Narayanaswamy, N.S., Raman, V., Ramanujan, M.S., Saurabh, S.: Faster parameterized algorithms using linear programming. ACM Trans. Algorithms 11(2), 15:1–15:31 (2014)
22. 22.
Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of the 49Th Annual ACM SIGACT Symposium on Theory of Computing (STOC), pp 224–237 (2017)Google Scholar
23. 23.
Moser, H.: Exact Algorithms for Generalizations of Vertex Cover. Master’s Thesis, Institut für Informatik, Friedrich-Schiller-Universität (2005)Google Scholar
24. 24.
Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem and feedback set problem for graphs with no vertex degree exceeding three. Discret. Math. 72, 355–360 (1988)
25. 25.
Wu, B.Y.: A measure and conquer Based approach for the parameterized hounded degree-one vertex deletion. In: Proceedings of the 21St International Computing and Combinatorics Conference (COCOON), pp 469–480 (2015)Google Scholar

## Authors and Affiliations

• R. Krithika
• 1
• Diptapriyo Majumdar
• 1
Email author
• Venkatesh Raman
• 1
1. 1.The Institute of Mathematical SciencesHBNIChennaiIndia