Skip to main content
Log in

Finite-State Independence

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

In this work we introduce a notion of independence based on finite-state automata: two infinite words are independent if no one helps to compress the other using one-to-one finite-state transducers with auxiliary input. We prove that, as expected, the set of independent pairs of infinite words has Lebesgue measure 1. We show that the join of two independent normal words is normal. However, the independence of two normal words is not guaranteed if we just require that their join is normal. To prove this we construct a normal word x 1 x 2 x 3… where x 2n = x n for every n. This construction has its own interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bauwens, B., Shen, A., Takahashi, H.: Conditional probabilities and van Lambalgen theorem revisited. Submitted (2016)

  2. Becher, V., Carton, O.: Normal numbers and computer science. In: Berthé, V., Rigó, M. (eds.) Sequences, Groups, and Number Theory, Trends in Mathematics Series. Birkhauser/Springer (2017)

  3. Becher, V., Carton, O., Heiber, P.A.: Normality and automata. J. Comput. Syst. Sci. 81(8), 1592–1613 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Becher, V., Heiber, P.A.: Normal numbers and finite automata. Theor. Comput. Sci. 477, 109–116 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Borel, É.: Les probabilités dénombrables et leurs applications arithmétiques. Rendiconti del Circolo Matematico di Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  6. Bugeaud, Y.: Distribution Modulo One and Diophantine Approximation. Series: Cambridge Tracts in Mathematics 193. Cambridge University Press (2012)

  7. Calude, C.S., Zimand, M.: Algorithmically independent sequences. Inf. Comput. 208(3), 292–308 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carton, O., Heiber, P.A.: Normality and two-way automata. Inf. Comput. 241, 264–276 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dai, J., Lathrop, J., Lutz, J., Mayordomo, E.: Finite-state dimension. Theor. Comput. Sci. 310, 1–33 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  10. Downey, R.G., Hirschfeldt, D.: Algorithmic Randomness and Complexity. Theory and Applications of Computability, p. xxvi 855. Springer, New York, NY (2010)

    Book  MATH  Google Scholar 

  11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, 6th edn. Oxford University Press (2008)

  12. Huffman, D.: A method for the construction of minimum-redundancy codes. In: Institute of Radio Engineers, vol. 40:9, pp. 1098–1101 (1952)

  13. Hyde, K., Kjos-Hanssen, B.: Nondeterministic automatic complexity of almost square-free and strongly cube-free words. In: Cai, Z., Zelikovsky, A., Bourgeois, A. (eds.) Computing and Combinatorics: 20Th International Conference, COCOON 2014, Atlanta, GA, USA, August 4-6, 2014. Proceedings, pp. 61–70. Springer International Publishing, Cham (2014)

  14. Kautz, S.: Degrees of Random Sets. PhD Thesis, Cornell University (1991)

  15. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley-Interscience, New York (1974)

    MATH  Google Scholar 

  16. Li, M., Vitanyi, P.: An Introduction to Kolmogorov Complexity and its Applications, 3rd edn. Springer Publishing Company, Incorporated (2008)

  17. Nies, A.: Computability and Randomness. Clarendon Press (2008)

  18. Perrin, D., Pin, J.-É.: Infinite Words. Elsevier (2004)

  19. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press (2009)

  20. Schnorr, C.P., Stimm, H.: Endliche automaten und zufallsfolgen. Acta Informatica 1, 345–359 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  21. Shallit, J., Wang, M.: Automatic complexity of strings. J. Autom. Lang. Comb. 6(4), 537–554 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Shen, A., Uspensky, V., Vereshchagin, N.: Kolmogorov complexity and algorithmic randomness. Submitted (2016)

  23. van Lambalgen, M.: Random Sequences. PhD Thesis, University of Amsterdam (1987)

Download references

Acknowledgements

The authors acknowledge Alexander Shen for many fruitful discussions. The authors are members of the Laboratoire International Associé INFINIS, CONICET/Universidad de Buenos Aires–CNRS/Université Paris Diderot. Becher is supported by the University of Buenos Aires and CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Verónica Becher.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Becher, V., Carton, O. & Heiber, P.A. Finite-State Independence. Theory Comput Syst 62, 1555–1572 (2018). https://doi.org/10.1007/s00224-017-9821-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-017-9821-6

Keywords

Navigation