Size-Treewidth Tradeoffs for Circuits Computing the Element Distinctness Function

Abstract

In this work we study the relationship between size and treewidth of circuits computing variants of the element distinctness function. First, we show that for each n, any circuit of treewidth t computing the element distinctness function δ n : {0, 1}n → {0, 1} must have size at least \(\Omega (\frac {n^{2}}{2^{O(t)} \log n})\). This result provides a non-trivial generalization of a super-linear lower bound for the size of Boolean formulas (treewidth 1) due to Nečiporuk. Subsequently, we turn our attention to read-once circuits, which are circuits where each variable labels at most one input vertex. For each n, we show that any read-once circuit of treewidth t and size s computing a variant τ n : {0, 1}n → {0, 1} of the element distinctness function must satisfy the inequality \(t\cdot \log s \geq \Omega (\frac {n}{\log n})\). Using this inequality in conjunction with known results in structural graph theory, we show that for each fixed graph H, read-once circuits computing τ n which exclude H as a minor must have size at least Ω(n 2/log4 n). For certain well studied functions, such as the triangle-freeness function, this last lower bound can be improved to Ω(n 2/log 2n).

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    Recently, this lower bound was improved to (3 + 1/86) no(n) [12].

  2. 2.

    We say that a circuit \(\mathcal {C}\) is H-minor-free if its underlying undirected graph excludes H as a minor.

  3. 3.

    An in-branching tree is a directed tree where all edges are oriented toward the root. An out-branching tree is a directed tree where all edges are oriented toward the leaves.

  4. 4.

    The structure (N, F)of the decomposition remains the same. Only function assigning bags to nodes in N isupdated.

  5. 5.

    For instance, the identity of ∧ is 1, while the identity of ∨ is 0. The requirement of an identity can easily be removed by replacing Condition 1b with a slightly more complicated initialization condition.

References

  1. 1.

    Alekhnovich, M., Razborov, A.A.: Satisfiability, branch-width and tseitin tautologies. In: Proceedings of the 43rd Symposium on Foundations of Computer Science (FOCS 2002), pp 593–603 (2002)

  2. 2.

    Allender, E., Chen, S., Lou, T., Papakonstantinou, P.A., Tang, B.: Width-parametrized SAT: time–space tradeoffs. Theory of Computing 10(12), 297–339 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Alon, N., Seymour, P., Thomas, R.: A separator theorem for graphs with an excluded minor and its applications. In: Proceedings of the 22nd Symposium on Theory of Computing (STOC 1990), pp 293–299. ACM (1990)

  4. 4.

    Blum, N.: A boolean function requiring 3n network size. Theor. Comput. Sci. 28(3), 337–345 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theor. Comput. Sci. 209(1–2), 1–45 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Broering, E., Lokam, S.V.: Width-based algorithms for SAT and CIRCUIT-SAT. In: Proceedings of the 6th International Conference on Theory and Applications of Satisfiability Testing (SAT 2004), Volume 2919 of LNCS, pp 162–171. Springer (2003)

  7. 7.

    Calabro, C.: A lower bound on the size of series-parallel graphs dense in long paths. Electronic Colloquium on Computational Complexity (ECCC), 15(110) (2008)

  8. 8.

    de Oliveira Oliveira, M.: Size-treewidth tradeoffs for circuits computing the element distinctness function. In: Proceedings of the 33Rd Symposium on Theoretical Aspects of Computer Science (STACS 2016), Volume 47 of LIPIcs, pp 56:1–56:14 (2016)

  9. 9.

    Demenkov, E., Kulikov, A.S.: An elementary proof of a 3no(n) lower bound on the circuit complexity of affine dispersers. In: Proceedings of the 36th International Symposium on Mathematical Foundations of Computer Science (MFCS 2011), Volume 6907 of LNCS, pp 256–265. Springer (2011)

  10. 10.

    Diestel, R.: Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer (2000)

  11. 11.

    Duris, P., Hromkovic, J., Jukna, S., Sauerhoff, M., Schnitger, G.: On multi-partition communication complexity. Inf. Comput. 194(1), 49–75 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Find, M.G., Golovnev, A., Hirsch, E.A., Kulikov, A.S.: A better-than-3n lower bound for the circuit complexity of an explicit function. In: Proceedings of the 57th Annual Symposium on Foundations of Computer Science (FOCS 2016), pp 89–98. IEEE (2016)

  13. 13.

    Gál, A., Jang, J.-T.: A generalization of Spira’s theorem and circuits with small segregators or separators. In: Proceedings of the 38th Conference on Theory and Practice of Computer Science (SOFSEM 2012), Volume 7147 of LNCS, pp 264–276. Springer (2012)

  14. 14.

    Georgiou, K., Papakonstantinou, P.A.: Complexity and algorithms for well-structured k-sat instances. In: Proceedings of the 11th International Conference on Theory and Applications of Satisfiability Testing (SAT 2008), Volume 4996 of LNCS, pp 105–118. Springer (2008)

  15. 15.

    Glaister, I., Shallit, J.: A lower bound technique for the size of nondeterministic finite automata. Inf. Process. Lett. 59(2), 75–77 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Grohe, M.: Local tree-width, excluded minors, and approximation algorithms. Combinatorica 23(4), 613–632 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Håstad, J.: The shrinkage exponent of de morgan formulas is 2. SIAM J. Comput. 27(1), 48–64 (1998)

    MathSciNet  Article  Google Scholar 

  18. 18.

    He, J., Liang, H., Sarma, J.M.: Limiting negations in bounded treewidth and upward planar circuits. In: In Proceedings 35th International Symposium on Mathematical Foundations of Computer Science (MFCS 2010), Volume 6281 of LNCS, pp 417–428. Springer (2010)

  19. 19.

    Hromkovič, J.: Communication complexity and lower bounds on multilective computations. RAIRO - Theoretical Informatics and Applications 33(02), 193–212 (1999)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    Iwama, K., Morizumi, H.: An explicit lower bound of 5n-o(n) for boolean circuits. In: Proceedings of the 27th International Symposium on Mathematical Foundations of Computer Science (MFCS 2002), Volume 2420 of LNCS, pp 353–364. Springer (2002)

  21. 21.

    Jansen, M.J., Sarma, J.: Balancing bounded treewidth circuits. Theory Comput. Syst. 54(2), 318–336 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Jukna, S.: Boolean Function Complexity: Advances and Frontiers, volume 27 of Algorithms and combinatorics. Springer (2012)

  23. 23.

    Lachish, O., Raz, R.: Explicit lower bound of 4.5 n-o(n) for boolena circuits. In: Proceedings of the 33rd Annual Symposium on Theory of Computing (STOC 2001), pp 399–408. ACM (2001)

  24. 24.

    Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Markov, I.L., Shi, Y.: Constant-degree graph expansions that preserve treewidth. Algorithmica 59(4), 461–470 (2011)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Nestoridis, N.V., Thilikos, D.M.: Square roots of minor closed graph classes. Discrete Appl. Math. 168, 34–39 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Nečiporuk: On a Boolean function. Soviet Math. Dokl. 7(4), 999–1000 (1966)

    Google Scholar 

  28. 28.

    Papadimitriou, C.H., Sipser, M.: Communication complexity. J. Comput. Syst. Sci. 28(2), 260–269 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  29. 29.

    Paturi, R., Pudlák, P.: Circuit lower bounds and linear codes. J. Math. Sci. 134(5), 2425–2434 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  30. 30.

    Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. Journal of Combinatorial Theory, Series B 63(1), 65–110 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  31. 31.

    Santhanam, R., Srinivasan, S.: On the limits of sparsification. In: Proceedings of 39th the International Conference on Automata, Languages, and Programming (ICALP 2012), Volume 7391 of LNCS, pp 774–785. Springer (2012)

  32. 32.

    Savage, J.E.: Planar circuit complexity and the performance of VLSI algorithms. In: INRIA Report 77 (1981). Also in VLSI Systems and Computations, pp 61–67. Computer Science Press, Rockwille, MD (1981)

  33. 33.

    Turán, G.: On the complexity of planar boolean circuits. Comput. Complex. 5(1), 24–42 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Valiant, L.G.: Graph-theoretic arguments in low-level complexity. In: Proceedings of the 6th Symposium on Mathematical Foundations of Computer Science, Volume 53 of LNCS, pp 162–176 (1977)

  35. 35.

    Wegener, I.: Branching Programs and Binary Decision Diagrams: Theory and Applications. SIAM (2000)

Download references

Acknowledgements

The author would like to thank Pavel Pudlák for interesting discussions on circuit lower-bounds, Pavel Hrubeš for pointing me out to reference [22], Michal Koucký and Bruno Loff for useful feedback during a seminar presentation of this work, and anonymous referees for valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mateus de Oliveira Oliveira.

Additional information

This is an extended version of a paper that appeared at STACS 2016 [8].

The author is currently supported by the Bergen Research Foundation. This work was partially done while the author was a postdoctoral researcher at the Czech Academy of Sciences, supported by the European Research Council (grant agreement 339691).

This article is part of the Topical Collection on Theoretical Aspects of Computer Science

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Oliveira Oliveira, M. Size-Treewidth Tradeoffs for Circuits Computing the Element Distinctness Function. Theory Comput Syst 62, 136–161 (2018). https://doi.org/10.1007/s00224-017-9814-5

Download citation

Keywords

  • Circuit complexity
  • Super-linear lower bounds
  • Element distinctness