Theory of Computing Systems

, Volume 62, Issue 3, pp 467–480 | Cite as

Level Two of the Quantifier Alternation Hierarchy Over Infinite Words



The study of various decision problems for logic fragments has a long history in computer science. This paper is on the membership problem for a fragment of first-order logic over infinite words; the membership problem asks for a given language whether it is definable in some fixed fragment. The alphabetic topology was introduced as part of an effective characterization of the fragment Σ2 over infinite words. Here, Σ2 consists of the first-order formulas with two blocks of quantifiers, starting with an existential quantifier. Its Boolean closure is \(\mathbb {B}{\Sigma }_{2}\). Our first main result is an effective characterization of the Boolean closure of the alphabetic topology, that is, given an ω-regular language L, it is decidable whether L is a Boolean combination of open sets in the alphabetic topology. This is then used for transferring Place and Zeitoun’s recent decidability result for \(\mathbb {B}{\Sigma }_{2}\) from finite to infinite words.


Automata theory Infinite words Semigroups Regular languages First-order logic Finite model theory 


  1. 1.
    Brzozowski, J.A., Knast, R.: The dot-depth hierarchy of star-free languages is infinite. J. Comput. Syst. Sci. 16(1), 37–55 (1978)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Diekert, V., Gastin, P., Kufleitner, M.: A survey on small fragments of first-order logic over finite words. Int. J. Found Comput. Sci. 19(3), 513–548 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Diekert, V., Kufleitner, M.: Fragments of first-order logic over infinite words. Theory Comput. Syst. 48(3), 486–516 (2011)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Eilenberg, S.: Automata Languages, and Machines, volume B. Academic Press (1976)Google Scholar
  5. 5.
    Kallas, J., Kufleitner, M., Lauser, A.: First-order fragments with successor over infinite words. In: STACS 2011, Proceedings, Volume 9 of LIPIcs, pp 356–367. Dagstuhl Publishing (2011)Google Scholar
  6. 6.
    Kozen, D.: Lower bounds for natural proof systems. In: Proceedings of the 18th Annual Symposium on Foundations of Computer Science, FOCS’77, pp 254–266. IEEE Computer Society Press, Providence, Rhode Island (1977)Google Scholar
  7. 7.
    Kufleitner, M., Walter, T.: Level two of the quantifier alternation hierarchy over infinite words. arXiv:1509.06207 (2015)
  8. 8.
    Kufleitner, M., Walter, T.: One quantifier alternation in first-order logic with modular predicates. RAIRO-Theor. Inf. Appl. 49(1), 1–22 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Perrin, D., Pin, J.: Infinite Words, volume 141 of Pure and Applied Mathematics. Elsevier (2004)Google Scholar
  10. 10.
    Pierron, T., Place, T., Zeitoun, M.: Quantifier alternation for infinite words. arXiv:1511.09011 (2015)
  11. 11.
    Pin, J.: A variety theorem without complementation. In: Russian Mathematics (Iz. VUZ), vol. 39, pp 80–90 (1995)Google Scholar
  12. 12.
    Pin, J.: Syntactic semigroups. In: Handbook of Formal Languages, vol. 1, pp 679–746. Springer (1997)Google Scholar
  13. 13.
    Place, T., Zeitoun, M.: Going higher in the first-order quantifier alternation hierarchy on words. In: ICALP 2014, Proceedings, Part II, vol. 8573 of LNCS, pp 342–353. Springer (2014)Google Scholar
  14. 14.
    Ramsey, F.P.: On a problem of formal logic. Proc. London Math. Soc. 30, 264–286 (1930)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Schwarz, S., Staiger, L.: Topologies Refining the Cantor Topology on X ω. In: IFIP TCS 2010, Proceedings, Volume 323 of 1 Advances in Information and Communication Technology, pp 271–285. Springer (2010)Google Scholar
  16. 16.
    Staiger, L., Wagner, K.W.: Automatentheoretische und automatenfreie Charakterisierungen topologischer Klassen Regulärer Folgenmengen. Elektron. Inform.-verarb Kybernetik 10, 379–392 (1974)MATHGoogle Scholar
  17. 17.
    Straubing, H.: Finite semigroup varieties of the form \(\mathbb {V}\mathbb {D}\). J Pure Appl. Algebra 36(1), 53–94 (1985)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity. Birkhäuser (1994)Google Scholar
  19. 19.
    Thomas, W.: Classifying regular events in symbolic logic. J. Comput. Syst. Sci. 25, 360–376 (1982)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Thomas, W.: Automata on infinite objects. In: Handbook of Theoretical Computer Science, Chapter 4, pp 133–191. Elsevier (1990)Google Scholar
  21. 21.
    Wilke, T.: Locally Threshold Testable Languages of Infinite Words. In: STACS ’93, Proceedings, Volume 665 of LNCS, pp 607–616. Springer (1993)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.FMIUniversität StuttgartStuttgartGermany

Personalised recommendations