Theory of Computing Systems

, Volume 61, Issue 3, pp 893–906 | Cite as

The 2-Rainbow Domination of Sierpiński Graphs and Extended Sierpiński Graphs

  • Jia-Jie Liu
  • Shun-Chieh Chang
  • Chiou-Jiun Lin


Let G(V, E) be a connected and undirected graph with n-vertex-set V and m-edge-set E. For each vV, let N(v) = {u|vV and(u, v) ∈ E}. For a positive integer k, a k-rainbow dominating function of a graph G is a function f from V(G) to a k-bit Boolean string f(v) = f k (v)f k − 1(v) … f 1(v), i.e., f i (v) ∈ {0, 1}, 1 ≤ ik, such that for any vertex v with f(v) = 0(k) we have ⋈ uN(v) f(u) = 1(k), for all vV, where ⋈ uS f(u) denotes the result of taking bitwise OR operation on f(u), for all uS. The weight of f is defined as \(w(f) = {\sum }_{v\in V}{\sum }^{k}_{i=1} f_{i}(v)\). The k-rainbow domination number γ k r (G) is the minimum weight of a k-rainbow dominating function over all k-rainbow dominating functions of G. The 1-rainbow domination is the same as the ordinary domination. The k-rainbow domination problem is to determine the k-rainbow domination number of a graph G. In this paper, we determine γ 2r (S(n, m)), γ 2r (S +(n, m)), and γ 2r (S ++(n, m)), where S(n, m), S +(n, m), and S ++(n, m) are Sierpiński graphs and extended Sierpiński graphs.


k-rainbow domination function Dominating set Sierpiński graphs Extended Sierpiński graphs 


  1. 1.
    Ali, M., Rahim, M.T., Zeb, M., Ali, G.: On 2-rainbow domination of some families of graphs. International Journal of Mathematics and Soft Computing 1, 47–53 (2011)Google Scholar
  2. 2.
    Brešar, B., Henning, M.A., Rall, D.F.: Paired-domination of Cartesian products of graphs and rainbow domination. Electron Notes Discrete Math. 22, 233–237 (2005)CrossRefMATHGoogle Scholar
  3. 3.
    Brešar, B., Kraner Šumenjak, T.: On the 2-rainbow domination in graphs. Discret. Appl. Math. 155, 2394–2400 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Brešar, B., Henning, M.A., Rall, D.F.: Rainbow Domination in Graphs. Taiwan. J. Math. 12(1), 213–225 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chang, G.J., Wu, J., Zhu, X.: Rainbow Domination on Trees. Discret. Appl. Math. 158, 8–12 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Chang, S.C., Liu, J.J., Wang, Y.L.: The Outer-connected Domination Number of Sierpiński-like Graphs. Theory of Computing Systems 58, 345–356 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, G.H., Duh, D.R.: Topological properties, communication, and computation on WK-recursive networks. Networks 24, 303–317 (1994)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Duh, D.R., Chen, G.H.: Topological properties of WK-recursive networks. J. Parallel Distrib. Comput. 23, 468–474 (1994)CrossRefGoogle Scholar
  9. 9.
    Fujita, S., Furuya, M., Magnant, C.: K-Rainbow domatic numbers. Discret. Appl. Math. 160, 1104–1113 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Fundamentals of Domination in Graphs. Marcel Dekker, Inc., New York (1998)MATHGoogle Scholar
  11. 11.
    Haynes, T.W., Hedetniemi, S.T., Slater, P.J.: Domination in Graphs: Advanced Topics. Marcel Dekker, Inc., New York (1998)MATHGoogle Scholar
  12. 12.
    Hinz, A.M., Schief, A.: The average distance on the Sierpiński gasket. Probab. Theory Relat. Fields 87, 129–138 (1990)CrossRefMATHGoogle Scholar
  13. 13.
    Hinz, A.M.: Pascal’s triangle and the Tower of Hanoi. Am. Math. Mon. 99, 538–544 (1992)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hinz, A.M., Klavžar, S., Milutinović, U., Parisse, D., Petr, C.: Metric properties of the Tower of Hanoi graphs and Stern’s diatomic sequence. Eur. J. Comb. 26, 693–708 (2005)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Hinz, A.M., Parisse, D.: The Average Eccentricity of Sierpiński Graphs. Graphs and Combinatorics 28, 671–686 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hinz, A.M., Klavžar, S., Milutinović, U., Petr, C.: The Tower of Hanoi-Myths and Maths., Birkhuser/Springer Basel AG, Basel (2013)Google Scholar
  17. 17.
    Jakovac, M., Klavžar, S.: Vertex-, edge- and total-colorings of Sierpiński-like graphs. Discret. Math. 309, 1548–1556 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Kaimanovich, V.A.: Random walks on Sierpiński graphs: hyperbolicity and stochastic homogenization. In: Grabner, P., Birkhaüser, W.W. (eds.) Fractals in Graz 2001, pp 145–183 (2003)CrossRefGoogle Scholar
  19. 19.
    Klavžar, S., Milutinović, U.: Graphs S(n, k) and a variant of the Tower of Hanoi problem. Czechoslov. Math. J. 47, 95–104 (1997)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Klavžar, S., Milutinović, U., Petr, C.: 1-perfect codes in Sierpiński graphs. Bull. Aust. Math. Soc. 66, 369–384 (2002)CrossRefMATHGoogle Scholar
  21. 21.
    Klavžar, S., Mohar, B.: Crossing numbers of Sierpiński-like graphs. J. Graph Theory 50, 186–198 (2005)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Klavžar, S.: Coloring Sierpiński graphs and Sierpiński gasket graphs. Taiwan. J. Math. 12, 513–522 (2008)CrossRefMATHGoogle Scholar
  23. 23.
    Klix, F., Rautenstrauch-Goede, K.: Struktur-und Komponentenanalyse von Problemlösungsprozessen. Zeitschrift für Psychologie 174, 167–193 (1967)Google Scholar
  24. 24.
    Lin, C.H., Liu, J.J., Wang, Y.L., Yen, W.C.K.: The hub number of Sierpiński-like graphs. Theory of Computing Systems 49(3), 588–600 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Lin, C.H., Liu, J.J., Wang, Y.L.: Global strong defensive alliances of Sierpiński-like graphs. Theory of Computing Systems 53(3), 365–385 (2013)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Liu, T.W., Pai, K.J., Wu, R.Y.: Upper bounds on 2 and 3-rainbow domination number of Sierpiński graphs, The 31st Workshop on Combinatorial Mathematics and Computation Theory 134–138Google Scholar
  27. 27.
    Meierling, D., Sheikholeslami, S.M., Volkmann, L.: Nordhaus-Gaddum Bounds on the k-Rainbow Domatic Number of a Graph. Appl. Math. Lett. 24, 1758–1761 (2011)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Parisse, D.: On some metric properties of the Sierpiński graphs S(n, k). Ars Combinatoria 90, 145–160 (2009)MathSciNetMATHGoogle Scholar
  29. 29.
    Romik, D.: Shortest paths in the Tower of Hanoi graph and finite automata. SIAM J. Discret. Math. 20, 610–622 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kraner Šumenjak, T., Rall, D.F., Tepeh, A.: Rainbow domination in the lexicographic product of graphs. Discret. Appl. Math. 161, 2133–2141 (2013)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Sydow, H.: Zur metrischen Erfasung von subjektiven Problemzuständen und zu deren Veränderung im Denkprozes. Zeitschrift für Psychologie 177, 145–198 (1970)Google Scholar
  32. 32.
    Teguia, A.M., Godbole, A.P.: Sierpiński gasket graphs and some of their properties. Aust. J. Commun. 35, 181–192 (2006)MATHGoogle Scholar
  33. 33.
    Tong, C.L., Lin, X.H., Yang, Y.S., Lou, M.Q.: 2-rainbow domination of generalized Petersen graphs P(n,2). Discret. Appl. Math. 157, 1932–1937 (2009)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Vecchia, G.D., Sanges, C.: A recursively scalable network VLSI implementation. Futur. Gener. Comput. Syst. 4, 235–243 (1988)CrossRefGoogle Scholar
  35. 35.
    Wu, Y., Xing, H.: Note on 2-rainbow domination and Raman domination in graphs. Appl. Math. Lett. 23, 706–709 (2010)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Xu, G.: 2-rainbow domination of generalized Petersen graphs P(n,3). Discret. Appl. Math. 157, 2570–2573 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Information ManagementShih Hsin UniversityTaipeiRepublic of China
  2. 2.Department of Information ManagementNational Taiwan University of Science and TechnologyTaipeiRepublic of China

Personalised recommendations