Abstract
Computable analysis has been part of computability theory since Turing’s original paper on the subject (Turing, Proc. London Math. Sc. 42:230–265, 1936). Nevertheless, it is difficult to locate basic results in this area. A first goal of this paper is to give some new simple proofs of fundamental classical results (highlighting the role of \({{\Pi }_{1}^{0}}\) classes). Naturally this paper cannot cover all aspects of computable analysis, but we hope that this gives the reader a completely self-contained ingress into this area. A second goal is to use tools from effective topology to analyse the Darboux property, particularly a result by Sierpiński, and the Blaschke Selection Theorem.
Similar content being viewed by others
Notes
In this year Richard Dedekind developed Dedekind cuts which gave an equivalent definition of the real numbers.
This list is a sample, and by no means exhaustive. For further contributions, see reference list.
Although it is fair to say that the interpretation of what a computable function should be differs in these texts, as we will soon see.
Both equivalences follow by well-known isomorphisms.
In the case of sets, A is a \({{\Sigma }_{1}^{0}}\) subset of \(\mathbb {N}\) if A can be expressed as x ∈ A iff ∃n R(x, n) where R is a computable predicate on \(\mathbb {N \times N}\).
This definition is not really attributed to Borel, however, as these types of functions are classically referred to as ‘Borel computable’ we will stick with this notation to avoid confusion.
Define a function ϕ(m, n) = f(x) n , where f(x) n is the n th term in f(x)′ s Cauchy name. By the S-m-n Theorem we can find a total computable function g such that ϕ(m, n) = φ g(m)(n) for all \(n \in \mathbb {N}\). By the Recursion Theorem g has a fixed point. That is, there exists an e ′ such that \(\varphi _{g(e^{\prime })}(n)=\varphi _{e^{\prime }}(n)\). Then \(\phi (m,n)=\phi (e^{\prime },n)= \varphi _{g(e^{\prime })}(n)=\varphi _{e}^{\prime }(n)\), and so e ′ is the index of the Cauchy name of f(x), and is computable from g.
In detail; we now take the partial function with index e and input it into the index function ν of f. Then ν(n) is the index of the partial function that outputs a Cauchy name for f(b). We take the (n+1)th approximation of f(b) and are done.
The use of a converging oracle computation ΦA(n) is z+1 for the largest z such that A(z) is queried during the computation. Let the use function be Use \(:\mathbb {N} \to \mathbb {N}\). That is, Use (ΦA(n)) = z+1 from above. The Use Principle is as follows; let ΦA be a converging oracle computation and B a set such that \(B \upharpoonright \textit {Use}({\Phi }^{A}(n))=A \upharpoonright \textit {Use}({\Phi }^{A}(n))\). Then ΦB(n) = ΦA(n). For more details see, for example, [25] Section 2.
Hertling has also written other papers about Banach-Mazur computability, notably ‘Banach-Mazur computable functions on metric Spaces’ [38].
An English translation of this paper can be found in [10].
It may be that this result appeared earlier that in the text given.
The function f is Type II computable, so there exists an oracle machine \({{\Phi }_{e}^{x}}\) that outputs a Cauchy name for f(x). If \({{\Phi }_{e}^{x}}\) reads the first m terms in a Cauchy name of x, and outputs a n th approximation of f(x), then by the Use Principle, this is also a sufficient n th approximation of f(y) for any real y ∈ (x m −2−m,x m +2−m). That is, the interval (x m −2−m,x m +2−m) maps into the interval (f(x) n −2−n,f(x) n +2−n).
As with the computable real and computable real-valued function, there exist other classifications of a computable subset of \(\mathbb {R}^{n}\). See, for example, the Braverman and Yampolsky book [14].
We emphasise that our result is for Baire rather than Cantor space. This does not have any effect in this paper but is worth bearing in mind as our \({{\Pi }_{1}^{0}}\) classes are not computably bounded. As a result, classical theorems (for example the Low Basis Theorem) would not apply here.
We can not just take the open balls B((a n , b n ),2−(n)) and B((a n , f(a) n ),2−(n)) here because the point (a, b) and (a, f(a)) may actually fall outside of these balls.
Note that \(d_{{\Gamma }_{f}, n}((a,b))\leq |f(x)_{n+2} - y_{n+2}|+2^{-(n+1)} =g(n,0)\).
If we were asked to evaluate u at this stage, defer to Stage 2.
An English translation of this paper can be found in [10].
He formed this example while preparing for lectures [20].
Folklore or any early text in recursive analysis.
‘Computable’ is intended again in the classical sense here.
This example is similar to an example of a real-valued canonical Darboux function given in [7].
An English translation of this paper can be found in [10].
Metric sourced from [28].
Notice we are using two different metrics here. Recall that d was defined earlier; d X (x i )= infx ∈ X|x − x i |.
The jump is considered as a set here again.
Notice that x n is thought of as a real here, rather than a term in a Cauchy name for a real x. This is one of the only notational exceptions of this type, and was made for convenience.
This is just a more convenient reformulation of Definition 6.2.2.
If a closed set X has a computable distance function then it can be expressed as a \({{\Pi }_{1}^{0}}\) class in Baire space. Check d X (x). If the n th approximation of d X (x) is ever greater than 2−n, kill the branch that extends however much of the Cauchy name of x we have seen.
References
Aberth, O.: Computable analysis McGraw-Hill International Book Company (1980)
Aberth, O.: Computable calculus Academic Press (2001)
Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing (2012)
Banach, S., Mazur, S.: Sur les fonctions calculables. Ann. Soc Pol. de Math 16, 223 (1937)
Bishop, E.: Foundations of Constructive Analysis. Academic Press, New York (1967)
Blaschke, W.: Kreis Und Kugel. Veit, Berlin (1916)
Bogoşel, B.: Functions with the intermediate value property. Romanian Mathematical Gazette Series A, 1–2 (2012)
Bolzano, B.: Rein analytischer beweis des Lehrsatzes, dass zwischen je zwey werthen, die ein entgegengesetztes resultat gewȧhren, wenigstens eine reelle wurzel der gleichung liege. Gottlieb Haase Sohne Publisher, Prague reprint: 2 edition (1817)
Bolzano, B.: Spisy Bernarda Bolzano - Bernard Bolzano’s Schriften Vol. 1. In: Rychlik, K. (ed.) Functionenlehre. Královská Ceská Spolecnost Nauk, Prague (1930)
Bolzano, B., Russ, S. (translator): Purely Analytic Proof of the Theorem that between any two Values, which give Results of Opposite Sign, there lies at least one real Root of the Equation. In: The mathematical works of Bernard Bolzano. Oxford University Press, Oxford (2004)
Borel, E.: Le calcul des intégrales définies. J. de Mathéatiques pures et appliquées 6(8), 159–210 (1912)
Bourgain, J.: On convergent sequences of continuous functions. Bull. Soc. Math. Belg. Sé,r. B 32(2), 235–249 (1980)
Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New Comp. Parad., 425–491 (2008)
Braverman, M., Yampolsky, M.: Computability of Julia sets. Springer, Berlin (2009)
Braverman, M.: On the complexity of real functions. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp. 155–164. IEEE (2005)
Brouwer, L.: Collected Works, Vol I - Philosophy and Foundations of Mathematics. American Elsevier Publishing Company, Amsterdam (1975)
Bruckner, A., Ceder, J., Weiss, M.: Uniform limits of Darboux functions. Coll Math. 15, 65–77 (1966)
Caldwell, J., Pour-El, M.: On a simple definition of computable function of a real variable-with applications to functions of a complex variable. Z. Math Logik Grundlagen Math. 21, 1–19 (1975)
Ceitin, G.: Algorithmic operators in constructive metric spaces. Tr. Math. Inst. Steklov. 67, 295–361 (1962)
Conway, J.: Explanation given at Canada/USA Mathcamp (2013)
Darboux, G.: Mémoire sur les fonctions discontinues. Ann. Sci. Scuola Norm. 4, 57–122 (1875)
Dehn, M.: Transformation der Kurven auf zweiseitigen flächen. Math. Ann. 72(3), 413–421 (1912)
Dehn, M., Stillwell, J. (translator): In Papers on group theory and topology, pp 179–199. Springer, New York Inc (1987)
Demuth, O.: Necessary and sufficient conditions for Riemann integrability of constructive functions. Dokl. Akad Nauk SSSR 176, 757–758 (1967)
Downey, R. (ed.): Turing’s Legacy: Developments from Turing’s ideas in logic. Cambridge University Press, Cambridge (2014)
Downey, R. G., Hirschfeldt, D. R.: Algorithmic randomness and complexity. Springer (2010)
Edwards, C.H. Jr.: The Historical Development of Calculus. Springer (1979)
Eggleston, H.: Convexity. Cambridge University Press, Cambridge (1977)
Encyclopedia.com. Weierstrass, Karl Theodor Wilhelm (2008)
Fowler, D., Robson, E.: Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia Math. 25(4), 366–378 (1998)
Gödel, K.: On formally undecidable propositions of Principia Mathematica and related systems I (1931). In: Collected Works, Vol. 1: Publications 1929–1936, pp. 144–195. Oxford University Press, New York (1986)
Goodstein, R.: Recursive analysis. Dover Publications (Reprint 2010) Amsterdam (1961)
Gordon, R.: The integrals of Lebesgue, Denjoy, Perron, and Henstock (vol. 4). Amer. Math. Soc. (1994)
Gruber, P., Wills, J. (eds.): Handbook of Convex Geometry Volume A. Elsevier Science Publishers B.V., Amsterdam (1993)
Grzegorczyk, A.: Computable functionals. Fund. Math. 42, 168–202 (1955)
Hermann, G.: Die frage der endlich vielen schritte in der theorie der polynomideale. Math. Ann. 95, 736–788 (1926)
Hermann, G.: The question of finitely many steps in polynomial ideal theory (translation). ACM SIGSAM Bull. 32(3), 8–30 (1998)
Hertling, P.: Banach-Mazur computable functions on metric spaces. In: Blanck, J., Brattka, V., Hertling, P. (eds.) Computability and Complexity in Analysis, volume 2064, pp. 69–81. Springer, Berlin Heidelberg (2001)
Hertling, P.: A Banach-Mazur computable but not Markov computable function on the computable real numbers. Ann. Pure Appl. Logic 132(2-3), 227–246 (2005)
Ivanov, A.: Blaschke selection theorem (2014)
Kleene, S: Introduction to metamathematics. Ishi Press (reprint 2009)
Kleene, S.: Countable functionals. North-Holland Publishing Company, Amsterdam (1959)
Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Acta Math. 95, 9–23 (1956)
Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Math. Reviews 19, 238 (1958)
Kreisel, G., Lacombe, D., Shoenfield, J.: Partial recursive functionals and effective operations. In: Heyting, A. (ed.) Construc. in Math., pp. 290–297, Amsterdam, 1959. North-Holland Publishing Company
Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen grossen. J. Reine Angew. Math. 92, 1–123 (1882)
Kronecker, L., Dedekind, R., Molk, J.: Grundzüge Einer Arithmetischen Theorie Der Algebraischen Grössen: a Complete Translation- except Only Abstracts of the First Four Sections. California Institute of Technology, Pasadena, Calif (1900)
Kushner, B.: Lectures on constructive mathematical analysis, volume 60 American Mathematical Society (1980)
Kuyper, R.: Effective genericity and differentiability. J. Log. Anal. 6(4), 1–14 (2014)
Kuyper, R., Sebastiaan, A.T.: Effective genericity and differentiability. J. Log. Anal. 6(4), 14 (2014)
Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables éelles II and III (1955)
Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I. C.R. Acad. Sci. 240, 2478–2480 (1955)
Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs applications á l’analyse récursive. C. R. Acad. Sci. Paris 245(13), 1040–1043 (1957)
Markov, A.: On the continuity of constructive functions. Uspehi Mat. Nauk 9, 226–230 (1954)
Markov, A.: On constructive functions. Trudy Math. Inst. Steklov. 52, 315–348 (1958)
Miller, J.: Degrees of unsolvability of continuous functions. J. Symb. Log. 69 (2), 555–584 (2004)
Ng, K.M.: Some properties of D.C.E Reals and Their Degrees. National University of Singapore, Master’s thesis (2006)
Orevkov, V.: A constructive map of the square into itself which moves every constructive point. Dokl. Akad. Nauk SSSR 152, 55–58 (1963)
Pour-El, M., Richards, J.: Computability in analysis and physics. Springer, Heidelberg (1989)
Radcliffe, D.: A function that is surjective on every interval. Math. Ass. Amer. 123(1), 1–2 (2016)
Rice, H.: Recursive real numbers. Proc. Amer. Math. Soc. 5, 784–791 (1954)
Robert I.S.: Recursively enumerable sets and degrees. Springer, New Inc., New York, NY USA (1987)
Sierpinski, W.: Sur une propriété de fonctions réelles quelconques définie dans les espaces métriques. Le Matematiche (Catania) 8, 73–78 (1953)
Simpson, S.: Subsystems of second order arithmetic. Cambridge University Press, New York (2009)
Specker, E.: Nicht konstruktiv beweisbare satze der analysis. J. Symb. Log. 14, 145–158 (1949)
Specker, E.: Der satz vom maximum in der rekursiven analysis. Construc. Math. Proc., Coll:254–265 (1959)
Turing, A.: On computable numbers, with an application to the Entsheidungsproblem. Proc. London Math. Sc. 42, 230–265 (1936)
Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. London Math. Sc. 43(2), 544–546 (1937)
Van Rooij, A., Schikhof, W.: A second course on real functions. Cambridge University Press (1982)
von Mises, R.: Grundlagen der wahrscheinlichkeitsrechnung. Math. Z. 5, 52–99 (1919)
von Mises, R.: Richard von Mises, probability, statistics, and truth. Dover Publications (reprint, original Springer: 1928) New York (1957)
Weierstrass, K.: Original Works. Weierstrass’ writings were published as Mathematische Werke. 7 vols. Berlin. 1894-1927
Zaslavsky, I.: The refutation of some theorems of classical analysis in constructive analysis. Uspehi Mat. Nauk 10, 209–210 (1955)
Zaslavsky, I.: Some properties of constructive real numbers and constructive functions. Trudy Math. Inst. Steklov 67, 385–457 (1962)
Acknowledgments
This work was supported by the Marsden Fund of New Zealand, and a MSc scholarship to Porter. Much of the material is based around Porter’s MSc Thesis supervised by Day and Downey, and for this reason Porter is the first author on the paper.
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is part of the Topical Collection on 50th Anniversary
Rights and permissions
About this article
Cite this article
Porter, M., Day, A. & Downey, R. Notes on Computable Analysis. Theory Comput Syst 60, 53–111 (2017). https://doi.org/10.1007/s00224-016-9732-y
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00224-016-9732-y