Skip to main content
Log in

Notes on Computable Analysis

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Computable analysis has been part of computability theory since Turing’s original paper on the subject (Turing, Proc. London Math. Sc. 42:230–265, 1936). Nevertheless, it is difficult to locate basic results in this area. A first goal of this paper is to give some new simple proofs of fundamental classical results (highlighting the role of \({{\Pi }_{1}^{0}}\) classes). Naturally this paper cannot cover all aspects of computable analysis, but we hope that this gives the reader a completely self-contained ingress into this area. A second goal is to use tools from effective topology to analyse the Darboux property, particularly a result by Sierpiński, and the Blaschke Selection Theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. In this year Richard Dedekind developed Dedekind cuts which gave an equivalent definition of the real numbers.

  2. This list is a sample, and by no means exhaustive. For further contributions, see reference list.

  3. Although it is fair to say that the interpretation of what a computable function should be differs in these texts, as we will soon see.

  4. Both equivalences follow by well-known isomorphisms.

  5. In the case of sets, A is a \({{\Sigma }_{1}^{0}}\) subset of \(\mathbb {N}\) if A can be expressed as xA iff ∃n R(x, n) where R is a computable predicate on \(\mathbb {N \times N}\).

  6. For English translation of [22], see [23]. For an English translation of [36], see [37]. For an English translation of [46], see [47]. For an English translation of [70], see [71].

  7. Quotes and comments from Borel’s paper [11] are based on a translation (French to English) by Avigad and Brattka [3].

  8. This definition is not really attributed to Borel, however, as these types of functions are classically referred to as ‘Borel computable’ we will stick with this notation to avoid confusion.

  9. Define a function ϕ(m, n) = f(x) n , where f(x) n is the n th term in f(x) s Cauchy name. By the S-m-n Theorem we can find a total computable function g such that ϕ(m, n) = φ g(m)(n) for all \(n \in \mathbb {N}\). By the Recursion Theorem g has a fixed point. That is, there exists an e such that \(\varphi _{g(e^{\prime })}(n)=\varphi _{e^{\prime }}(n)\). Then \(\phi (m,n)=\phi (e^{\prime },n)= \varphi _{g(e^{\prime })}(n)=\varphi _{e}^{\prime }(n)\), and so e is the index of the Cauchy name of f(x), and is computable from g.

  10. In detail; we now take the partial function with index e and input it into the index function ν of f. Then ν(n) is the index of the partial function that outputs a Cauchy name for f(b). We take the (n+1)th approximation of f(b) and are done.

  11. The use of a converging oracle computation ΦA(n) is z+1 for the largest z such that A(z) is queried during the computation. Let the use function be Use \(:\mathbb {N} \to \mathbb {N}\). That is, UseA(n)) = z+1 from above. The Use Principle is as follows; let ΦA be a converging oracle computation and B a set such that \(B \upharpoonright \textit {Use}({\Phi }^{A}(n))=A \upharpoonright \textit {Use}({\Phi }^{A}(n))\). Then ΦB(n) = ΦA(n). For more details see, for example, [25] Section 2.

  12. Hertling has also written other papers about Banach-Mazur computability, notably ‘Banach-Mazur computable functions on metric Spaces’ [38].

  13. An English translation of this paper can be found in [10].

  14. It may be that this result appeared earlier that in the text given.

  15. The function f is Type II computable, so there exists an oracle machine \({{\Phi }_{e}^{x}}\) that outputs a Cauchy name for f(x). If \({{\Phi }_{e}^{x}}\) reads the first m terms in a Cauchy name of x, and outputs a n th approximation of f(x), then by the Use Principle, this is also a sufficient n th approximation of f(y) for any real y ∈ (x m −2m,x m +2m). That is, the interval (x m −2m,x m +2m) maps into the interval (f(x) n −2n,f(x) n +2n).

  16. As with the computable real and computable real-valued function, there exist other classifications of a computable subset of \(\mathbb {R}^{n}\). See, for example, the Braverman and Yampolsky book [14].

  17. We emphasise that our result is for Baire rather than Cantor space. This does not have any effect in this paper but is worth bearing in mind as our \({{\Pi }_{1}^{0}}\) classes are not computably bounded. As a result, classical theorems (for example the Low Basis Theorem) would not apply here.

  18. We can not just take the open balls B((a n , b n ),2−(n)) and B((a n , f(a) n ),2−(n)) here because the point (a, b) and (a, f(a)) may actually fall outside of these balls.

  19. Note that \(d_{{\Gamma }_{f}, n}((a,b))\leq |f(x)_{n+2} - y_{n+2}|+2^{-(n+1)} =g(n,0)\).

  20. If we were asked to evaluate u at this stage, defer to Stage 2.

  21. An English translation of this paper can be found in [10].

  22. He formed this example while preparing for lectures [20].

  23. Folklore or any early text in recursive analysis.

  24. ‘Computable’ is intended again in the classical sense here.

  25. This example is similar to an example of a real-valued canonical Darboux function given in [7].

  26. The paper cited here, ‘Kreis und Kugel’, is written in German and has not been translated into English. A number of secondary sources confirmed this reference, for example [40] and [34].

  27. An English translation of this paper can be found in [10].

  28. Weierstrass published relatively little in his lifetime, but some of his original works can be found in [72]. See [29] for historical information.

  29. Metric sourced from [28].

  30. Notice we are using two different metrics here. Recall that d was defined earlier; d X (x i )= infxX|xx i |.

  31. The jump is considered as a set here again.

  32. Notice that x n is thought of as a real here, rather than a term in a Cauchy name for a real x. This is one of the only notational exceptions of this type, and was made for convenience.

  33. This is just a more convenient reformulation of Definition 6.2.2.

  34. If a closed set X has a computable distance function then it can be expressed as a \({{\Pi }_{1}^{0}}\) class in Baire space. Check d X (x). If the n th approximation of d X (x) is ever greater than 2n, kill the branch that extends however much of the Cauchy name of x we have seen.

References

  1. Aberth, O.: Computable analysis McGraw-Hill International Book Company (1980)

  2. Aberth, O.: Computable calculus Academic Press (2001)

  3. Avigad, J., Brattka, V.: Computability and analysis: the legacy of Alan Turing (2012)

  4. Banach, S., Mazur, S.: Sur les fonctions calculables. Ann. Soc Pol. de Math 16, 223 (1937)

    Google Scholar 

  5. Bishop, E.: Foundations of Constructive Analysis. Academic Press, New York (1967)

    MATH  Google Scholar 

  6. Blaschke, W.: Kreis Und Kugel. Veit, Berlin (1916)

    MATH  Google Scholar 

  7. Bogoşel, B.: Functions with the intermediate value property. Romanian Mathematical Gazette Series A, 1–2 (2012)

  8. Bolzano, B.: Rein analytischer beweis des Lehrsatzes, dass zwischen je zwey werthen, die ein entgegengesetztes resultat gewȧhren, wenigstens eine reelle wurzel der gleichung liege. Gottlieb Haase Sohne Publisher, Prague reprint: 2 edition (1817)

  9. Bolzano, B.: Spisy Bernarda Bolzano - Bernard Bolzano’s Schriften Vol. 1. In: Rychlik, K. (ed.) Functionenlehre. Královská Ceská Spolecnost Nauk, Prague (1930)

  10. Bolzano, B., Russ, S. (translator): Purely Analytic Proof of the Theorem that between any two Values, which give Results of Opposite Sign, there lies at least one real Root of the Equation. In: The mathematical works of Bernard Bolzano. Oxford University Press, Oxford (2004)

  11. Borel, E.: Le calcul des intégrales définies. J. de Mathéatiques pures et appliquées 6(8), 159–210 (1912)

    MATH  Google Scholar 

  12. Bourgain, J.: On convergent sequences of continuous functions. Bull. Soc. Math. Belg. Sé,r. B 32(2), 235–249 (1980)

    MathSciNet  MATH  Google Scholar 

  13. Brattka, V., Hertling, P., Weihrauch, K.: A tutorial on computable analysis. New Comp. Parad., 425–491 (2008)

  14. Braverman, M., Yampolsky, M.: Computability of Julia sets. Springer, Berlin (2009)

    MATH  Google Scholar 

  15. Braverman, M.: On the complexity of real functions. In: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS’05), pp. 155–164. IEEE (2005)

  16. Brouwer, L.: Collected Works, Vol I - Philosophy and Foundations of Mathematics. American Elsevier Publishing Company, Amsterdam (1975)

    MATH  Google Scholar 

  17. Bruckner, A., Ceder, J., Weiss, M.: Uniform limits of Darboux functions. Coll Math. 15, 65–77 (1966)

    MathSciNet  MATH  Google Scholar 

  18. Caldwell, J., Pour-El, M.: On a simple definition of computable function of a real variable-with applications to functions of a complex variable. Z. Math Logik Grundlagen Math. 21, 1–19 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ceitin, G.: Algorithmic operators in constructive metric spaces. Tr. Math. Inst. Steklov. 67, 295–361 (1962)

    MathSciNet  Google Scholar 

  20. Conway, J.: Explanation given at Canada/USA Mathcamp (2013)

  21. Darboux, G.: Mémoire sur les fonctions discontinues. Ann. Sci. Scuola Norm. 4, 57–122 (1875)

    Google Scholar 

  22. Dehn, M.: Transformation der Kurven auf zweiseitigen flächen. Math. Ann. 72(3), 413–421 (1912)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dehn, M., Stillwell, J. (translator): In Papers on group theory and topology, pp 179–199. Springer, New York Inc (1987)

  24. Demuth, O.: Necessary and sufficient conditions for Riemann integrability of constructive functions. Dokl. Akad Nauk SSSR 176, 757–758 (1967)

    MathSciNet  MATH  Google Scholar 

  25. Downey, R. (ed.): Turing’s Legacy: Developments from Turing’s ideas in logic. Cambridge University Press, Cambridge (2014)

  26. Downey, R. G., Hirschfeldt, D. R.: Algorithmic randomness and complexity. Springer (2010)

  27. Edwards, C.H. Jr.: The Historical Development of Calculus. Springer (1979)

  28. Eggleston, H.: Convexity. Cambridge University Press, Cambridge (1977)

    MATH  Google Scholar 

  29. Encyclopedia.com. Weierstrass, Karl Theodor Wilhelm (2008)

  30. Fowler, D., Robson, E.: Square root approximations in old Babylonian mathematics: YBC 7289 in context. Historia Math. 25(4), 366–378 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gödel, K.: On formally undecidable propositions of Principia Mathematica and related systems I (1931). In: Collected Works, Vol. 1: Publications 1929–1936, pp. 144–195. Oxford University Press, New York (1986)

  32. Goodstein, R.: Recursive analysis. Dover Publications (Reprint 2010) Amsterdam (1961)

  33. Gordon, R.: The integrals of Lebesgue, Denjoy, Perron, and Henstock (vol. 4). Amer. Math. Soc. (1994)

  34. Gruber, P., Wills, J. (eds.): Handbook of Convex Geometry Volume A. Elsevier Science Publishers B.V., Amsterdam (1993)

  35. Grzegorczyk, A.: Computable functionals. Fund. Math. 42, 168–202 (1955)

    MathSciNet  MATH  Google Scholar 

  36. Hermann, G.: Die frage der endlich vielen schritte in der theorie der polynomideale. Math. Ann. 95, 736–788 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  37. Hermann, G.: The question of finitely many steps in polynomial ideal theory (translation). ACM SIGSAM Bull. 32(3), 8–30 (1998)

    Article  MATH  Google Scholar 

  38. Hertling, P.: Banach-Mazur computable functions on metric spaces. In: Blanck, J., Brattka, V., Hertling, P. (eds.) Computability and Complexity in Analysis, volume 2064, pp. 69–81. Springer, Berlin Heidelberg (2001)

  39. Hertling, P.: A Banach-Mazur computable but not Markov computable function on the computable real numbers. Ann. Pure Appl. Logic 132(2-3), 227–246 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ivanov, A.: Blaschke selection theorem (2014)

  41. Kleene, S: Introduction to metamathematics. Ishi Press (reprint 2009)

  42. Kleene, S.: Countable functionals. North-Holland Publishing Company, Amsterdam (1959)

    MATH  Google Scholar 

  43. Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Acta Math. 95, 9–23 (1956)

    Article  MathSciNet  Google Scholar 

  44. Kreisel, G.: Review of Meschkowski - Zur rekursiven funktionentheorie. Math. Reviews 19, 238 (1958)

    Google Scholar 

  45. Kreisel, G., Lacombe, D., Shoenfield, J.: Partial recursive functionals and effective operations. In: Heyting, A. (ed.) Construc. in Math., pp. 290–297, Amsterdam, 1959. North-Holland Publishing Company

  46. Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen grossen. J. Reine Angew. Math. 92, 1–123 (1882)

    MathSciNet  MATH  Google Scholar 

  47. Kronecker, L., Dedekind, R., Molk, J.: Grundzüge Einer Arithmetischen Theorie Der Algebraischen Grössen: a Complete Translation- except Only Abstracts of the First Four Sections. California Institute of Technology, Pasadena, Calif (1900)

  48. Kushner, B.: Lectures on constructive mathematical analysis, volume 60 American Mathematical Society (1980)

  49. Kuyper, R.: Effective genericity and differentiability. J. Log. Anal. 6(4), 1–14 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  50. Kuyper, R., Sebastiaan, A.T.: Effective genericity and differentiability. J. Log. Anal. 6(4), 14 (2014)

    MathSciNet  MATH  Google Scholar 

  51. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables éelles II and III (1955)

  52. Lacombe, D.: Extension de la notion de fonction récursive aux fonctions d’une ou plusieurs variables réelles I. C.R. Acad. Sci. 240, 2478–2480 (1955)

    MathSciNet  MATH  Google Scholar 

  53. Lacombe, D.: Les ensembles récursivement ouverts ou fermés, et leurs applications á l’analyse récursive. C. R. Acad. Sci. Paris 245(13), 1040–1043 (1957)

    MathSciNet  MATH  Google Scholar 

  54. Markov, A.: On the continuity of constructive functions. Uspehi Mat. Nauk 9, 226–230 (1954)

    MathSciNet  MATH  Google Scholar 

  55. Markov, A.: On constructive functions. Trudy Math. Inst. Steklov. 52, 315–348 (1958)

    MathSciNet  MATH  Google Scholar 

  56. Miller, J.: Degrees of unsolvability of continuous functions. J. Symb. Log. 69 (2), 555–584 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ng, K.M.: Some properties of D.C.E Reals and Their Degrees. National University of Singapore, Master’s thesis (2006)

    Google Scholar 

  58. Orevkov, V.: A constructive map of the square into itself which moves every constructive point. Dokl. Akad. Nauk SSSR 152, 55–58 (1963)

    MathSciNet  Google Scholar 

  59. Pour-El, M., Richards, J.: Computability in analysis and physics. Springer, Heidelberg (1989)

    Book  MATH  Google Scholar 

  60. Radcliffe, D.: A function that is surjective on every interval. Math. Ass. Amer. 123(1), 1–2 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  61. Rice, H.: Recursive real numbers. Proc. Amer. Math. Soc. 5, 784–791 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  62. Robert I.S.: Recursively enumerable sets and degrees. Springer, New Inc., New York, NY USA (1987)

  63. Sierpinski, W.: Sur une propriété de fonctions réelles quelconques définie dans les espaces métriques. Le Matematiche (Catania) 8, 73–78 (1953)

    MATH  Google Scholar 

  64. Simpson, S.: Subsystems of second order arithmetic. Cambridge University Press, New York (2009)

    Book  MATH  Google Scholar 

  65. Specker, E.: Nicht konstruktiv beweisbare satze der analysis. J. Symb. Log. 14, 145–158 (1949)

    Article  MATH  Google Scholar 

  66. Specker, E.: Der satz vom maximum in der rekursiven analysis. Construc. Math. Proc., Coll:254–265 (1959)

  67. Turing, A.: On computable numbers, with an application to the Entsheidungsproblem. Proc. London Math. Sc. 42, 230–265 (1936)

    MATH  Google Scholar 

  68. Turing, A.: On computable numbers, with an application to the Entscheidungsproblem. A correction. Proc. London Math. Sc. 43(2), 544–546 (1937)

    MATH  Google Scholar 

  69. Van Rooij, A., Schikhof, W.: A second course on real functions. Cambridge University Press (1982)

  70. von Mises, R.: Grundlagen der wahrscheinlichkeitsrechnung. Math. Z. 5, 52–99 (1919)

    Article  MathSciNet  MATH  Google Scholar 

  71. von Mises, R.: Richard von Mises, probability, statistics, and truth. Dover Publications (reprint, original Springer: 1928) New York (1957)

  72. Weierstrass, K.: Original Works. Weierstrass’ writings were published as Mathematische Werke. 7 vols. Berlin. 1894-1927

  73. Zaslavsky, I.: The refutation of some theorems of classical analysis in constructive analysis. Uspehi Mat. Nauk 10, 209–210 (1955)

    Google Scholar 

  74. Zaslavsky, I.: Some properties of constructive real numbers and constructive functions. Trudy Math. Inst. Steklov 67, 385–457 (1962)

    MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was supported by the Marsden Fund of New Zealand, and a MSc scholarship to Porter. Much of the material is based around Porter’s MSc Thesis supervised by Day and Downey, and for this reason Porter is the first author on the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Porter.

Additional information

This article is part of the Topical Collection on 50th Anniversary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Porter, M., Day, A. & Downey, R. Notes on Computable Analysis. Theory Comput Syst 60, 53–111 (2017). https://doi.org/10.1007/s00224-016-9732-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-016-9732-y

Keywords

Navigation