Theory of Computing Systems

, Volume 61, Issue 3, pp 721–738 | Cite as

Parameterized Algorithms for Graph Partitioning Problems

Article
  • 116 Downloads

Abstract

We study a broad class of graph partitioning problems. Each problem is defined by two constants, α1 and α2. The input is a graph G, an integer k and a number p, and the objective is to find a subset \(U\subseteq V\) of size k, such that α1m1 + α2m2 is at most (or at least) p, where m1, m2 are the cardinalities of the edge sets having both endpoints, and exactly one endpoint, in U, respectively. This class of fixed-cardinality graph partitioning problems (FGPPs) encompasses Max (k, nk)-Cut, Mink-Vertex Cover, k-Densest Subgraph, and k-Sparsest Subgraph. Our main result is a 4k + o(k)ΔknO(1) time algorithm for any problem in this class, where Δ ≥ 1 is the maximum degree in the input graph. This resolves an open question posed by Bonnet et al. (Proc. International Symposium on Parameterized and Exact Computation, 2013). We obtain faster algorithms for certain subclasses of FGPPs, parameterized by p, or by (k + p). In particular, we give a 4p + o(p)nO(1) time algorithm for Max (k, nk)-Cut, thus improving significantly the best known ppnO(1) time algorithm by Bonnet et al.

Keywords

Parameterized algorithm Graph partitioning Representative family Random separation 

References

  1. 1.
    Berkhin, P.: A survey of clustering data mining techniques. Grouping Multidimensional Data, pp. 25–71 (2006)Google Scholar
  2. 2.
    Bonnet, E., Escoffier, B., Paschos, V.T., Tourniaire, E.: Multi-parameter analysis for local graph partitioning problems: Using greediness for parameterization. Algorithmica 71(3), 566–580 (2015)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.T.: Exact and approximation algorithms for densest k-subgraph. In: WALCOM, pp. 114–125 (2013)Google Scholar
  4. 4.
    Cai, L.: Parameterized complexity of cardinality constrained optimization problems. Comput. J. 51(1), 102–121 (2008)CrossRefGoogle Scholar
  5. 5.
    Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: IPEC, pp. 239–250 (2006)Google Scholar
  6. 6.
    Chitnis, R.H., Cygan, M., Hajiaghayi, M., Pilipczuk, M., Pilipczuk, M.: Designing FPT algorithms for cut problems using randomized contractions. In: FOCS, pp. 460–469 (2012)Google Scholar
  7. 7.
    Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Minimum bisection is fixed parameter tractable. In: STOC, pp. 323–332 (2014)Google Scholar
  8. 8.
    Donavalli, A., Rege, M., Liu, X., Jafari-Khouzani, K.: Low-rank matrix factorization and co-clustering algorithms for analyzing large data sets. In: ICDEM, pp. 272–279 (2010)Google Scholar
  9. 9.
    Downey, R.G., Estivill-Castro, V., Fellows, M.R., Prieto, E., Rosamond, F.A.: Cutting up is hard to do: the parameterized complexity of k-cut and related problems. Electron. Notes Theor. Comput. Sci. 78, 209–222 (2003)CrossRefMATHGoogle Scholar
  10. 10.
    Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II: On completeness for W[1]. Theor. Comput. Sci. 141(1&2), 109–131 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Lokshtanov, D., Panolan, F., Saurabh, S.: Representative sets of product families. In: ESA, pp. 443–454 (2014)Google Scholar
  12. 12.
    Fomin, F.V., Lokshtanov, D., Saurabh, S.: Efficient computation of representative sets with applications in parameterized and exact agorithms. In: SODA, pp. 142–151 (2014)Google Scholar
  13. 13.
    Goyal, P., Misra, N., Panolan, F., Zehavi, M.: Deterministic parameterized algorithms for matching and packing problems. SIAM J. Discrete Math. 29(4), 1815–1836 (2015)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Guo, J., Niedermeier, R., Wernicke, S.: Parameterized complexity of vertex cover variants. Theory Comput. Syst. 41(3), 501–520 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kahng, A.B., Lienig, J., Markov, I.L., Hu, J.: VLSI Physical Design - From Graph Partitioning to Timing Closure. Springer (2011)Google Scholar
  16. 16.
    Kloks, T.: Treewidth, computations and approximations. LNCS 842. Springer (1994)Google Scholar
  17. 17.
    Kneis, J., Langer, A., Rossmanith, P.: Improved upper bounds for partial vertex cover. In: WG, pp. 240–251 (2008)Google Scholar
  18. 18.
    Komusiewicz, C., Sorge, M.: Finding dense subgraphs of sparse graphs, pp. 242–251 (2012)Google Scholar
  19. 19.
    Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)Google Scholar
  20. 20.
    Saurabh, S., Zehavi, M.: (k, nk)-max-cut: An o (2p)-time algorithm and a polynomial kernel. In: LATIN, pp. 686–699 (2016)Google Scholar
  21. 21.
    Shachnai, H., Zehavi, M.: Representative families: A unified tradeoff-based approach. In: ESA, pp. 786–797 (2014)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceTechnion IITHaifaIsrael

Personalised recommendations