Theory of Computing Systems

, Volume 60, Issue 2, pp 253–279 | Cite as

The Complexity of Finding Effectors

  • Laurent Bulteau
  • Stefan Fafianie
  • Vincent Froese
  • Rolf Niedermeier
  • Nimrod TalmonEmail author


The NP-hard Effectors problem on directed graphs is motivated by applications in network mining, particularly concerning the analysis of probabilistic information-propagation processes in social networks. In the corresponding model the arcs carry probabilities and there is a probabilistic diffusion process activating nodes by neighboring activated nodes with probabilities as specified by the arcs. The point is to explain a given network activation state as well as possible by using a minimum number of “effector nodes”; these are selected before the activation process starts. We correct, complement, and extend previous work from the data mining community by a more thorough computational complexity analysis of Effectors, identifying both tractable and intractable cases. To this end, we also exploit a parameterization measuring the “degree of randomness” (the number of ‘really’ probabilistic arcs) which might prove useful for analyzing other probabilistic network diffusion problems as well.


Probabilistic information propagation Influence maximization Network activation Social networks Exact algorithms Parameterized complexity 



We are grateful to two anonymous reviewers of Theory of Computing Systems whose careful and constructive feedback helped to significantly improve the presentation of the paper.


  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and Applications. Prentice Hall (1993)Google Scholar
  2. 2.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press (2009)Google Scholar
  3. 3.
    Askalidis, G., Berry, R.A., Subramanian, V.G.: Explaining snapshots of network diffusions Structural and hardness results. In: proceedings of the 20th International Conference on Computing and Combinatorics, volume 8591 of LNCS, pp 616–625. Springer (2014)Google Scholar
  4. 4.
    Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized inapproximability of target set selection and generalizations. Computability 3(2), 135–145 (2014)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bazgan, C., Chopin, M., Nichterlein, A., Sikora, F.: Parameterized approximability of maximizing the spread of influence in networks. J. Discret. Algorithm. 27, 54–65 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ben-Zwi, O., Hermelin, D., Lokshtanov, D., Newman, I.: Treewidth governs the complexity of target set selection. Discret. Optim. 8(1), 87–96 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: proceedings of the Third International Workshop on Internet and Network Economics, volume 4858 of LNCS, pp 306–311. Springer (2007)Google Scholar
  8. 8.
    Chopin, M., Nichterlein, A., Niedermeier, R., Weller, M.: Constant thresholds can make target set selection tractable. Theory Comput. Syst. 55(1), 61–83 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cygan, M., Fomin, F. V., Kowalik, Ł., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized algorithms. springer (2015)Google Scholar
  10. 10.
    Domingos, P., Richardson, M.: Mining the network value of customers. In: proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 57–66. ACM (2001)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Fundamentals of parameterized complexity. springer (2013)Google Scholar
  12. 12.
    Fellows, M.R., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Flum, J., Grohe, M.: Parameterized complexity theory, springer (2006)Google Scholar
  14. 14.
    Kempe, D., Kleinberg, J.M., Tardos, É.: Maximizing the spread of influence through a social network. Theory Comput. 11, 105–147 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lappas, T., Terzi, E., Gunopulos, D., Mannila, H.: Finding effectors in social networks. In: proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1059–1068. ACM (2010)Google Scholar
  16. 16.
    Nichterlein, A., Niedermeier, R., Uhlmann, J., Weller, M.: On tractable cases of target set selection. Soc. Netw. Anal. Min. 3(2), 233–256 (2013)CrossRefzbMATHGoogle Scholar
  17. 17.
    Niedermeier, R.: Invitation to Fixed-Parameter algorithms. oxford university press (2006)Google Scholar
  18. 18.
    Valiant, L.G.: The complexity of enumeration and reliability problems. SIAM J. Comput. 8(3), 410–421 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wang, C., Chen, W., Wang, Y.: Scalable influence maximization for independent cascade model in large-scale social networks. Data Min. Knowl. Discov. 25(3), 545–576 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Laurent Bulteau
    • 1
  • Stefan Fafianie
    • 2
  • Vincent Froese
    • 4
  • Rolf Niedermeier
    • 4
  • Nimrod Talmon
    • 3
    Email author
  1. 1.IGM-LabInfo, CNRS UMR 8049Université Paris-Est Marne-la-ValléeMarne-la-ValléeFrance
  2. 2.Institut für InformatikUniversität BonnBonnGermany
  3. 3.Weizmann Institute of ScienceRehovotIsrael
  4. 4.Institut für Softwaretechnik und Theoretische InformatikTU BerlinGermany

Personalised recommendations