Theory of Computing Systems

, Volume 57, Issue 2, pp 319–336 | Cite as

A Split-Based Incremental Deterministic Automata Minimization Algorithm

  • Pedro García
  • Manuel Vázquez de Parga
  • Jairo A. Velasco
  • Damián López
Article

Abstract

We here study previous results due to Hopcroft and Almeida et al. to propose an incremental split-based deterministic automata minimization algorithm whose average running-time does not depend on the size of the alphabet. The experimentation carried out shows that our proposal outperforms the algorithms studied whenever the automata have more than a (quite small) number of states and symbols.

Keywords

Finite automata DFA minimization Incremental minimization 

References

  1. 1.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley Publishing Company (1979)Google Scholar
  2. 2.
    Watson, B.W., Daciuk, J.: An efficient incremental DFA minimization algorithm. Nat. Lang. Eng. 9(1), 49–64 (2003)CrossRefGoogle Scholar
  3. 3.
    Almeida, M., Moreira, N., Reis, R.: Incremental DFA minimisation. In: Domaratzki, M., Salomaa, K. (eds.) CIAA, of Lecture Notes in Computer Science, vol. 6482, pp 39–48. Springer (2010)Google Scholar
  4. 4.
    Hopcroft, J.E.: An \(n\cdot \log n\) algorithm for minimizing states in a finite automaton. Technical report, Stanford, University, Stanford (1971)Google Scholar
  5. 5.
    Moore, E.F.: Gedanken experiments on sequential machines. In: Shannon, C.E., Mc-Carthy, J. (eds.) Automata Studies. Princeton Universty Press, Princeton (1956)Google Scholar
  6. 6.
    Berstel, J., Boasson, L., Carton, O., Fagnot, I.: Automata: from Mathematics to Applications, chapter Minimization of automata. European Mathematical Society. (arXiv:1010.5318v3.) To appear.
  7. 7.
    David, J.: Average complexity of Moore’s and Hopcroft’s algorithms. Theor. Comput. Sci. 417, 50–65 (2012)CrossRefMATHGoogle Scholar
  8. 8.
    Almeida, M., Moreira, N., Reis, R.: Aspects of enumeration and generation with a string automata representation. In: Leung, H., Pighizzini, G. (eds.) DCFS, pp 58–69. New Mexico State University, Las Cruces (2006)Google Scholar
  9. 9.
    Gries, D.: Describing an algorithm by Hopcroft. Acta Informatica 2, 97–109 (1973)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Aho, A., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer Algorithms. Addison-Wesley Publishing Company (1974)Google Scholar
  11. 11.
    Blum, N.: A \(\mathcal {O}(n\log n)\) implementation of the standard method for minimizing n-state finite automata. Inf. Process. Lett. 57, 65–69 (1996)CrossRefMATHGoogle Scholar
  12. 12.
    Knuutila, T.: Re-describing an algorithm by Hopcroft. Theor. Comput. Sci. 250, 333–363 (2001)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Veanes, M.: Minimization of symbolic automata. Technical report, Microsoft Research, MSR-TR-2013-48 (2013)Google Scholar
  14. 14.
    Lothaire, M.: Applied Combinatorics on Words chap. 1. Cambridge University Press, Cambridge (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Pedro García
    • 1
  • Manuel Vázquez de Parga
    • 1
  • Jairo A. Velasco
    • 2
  • Damián López
    • 1
  1. 1.Departamento de Sistemas Informáticos y ComputaciónUniversidad Politécnica de ValenciaValenciaSpain
  2. 2.Pontificia Universidad JaverianaCaliColombia

Personalised recommendations