Theory of Computing Systems

, Volume 57, Issue 1, pp 36–80 | Cite as

The Complexity of Debate Checking

  • H. Gökalp DemirciEmail author
  • A. C. Cem Say
  • Abuzer Yakaryılmaz


We study probabilistic debate checking, where a silent resource-bounded verifier reads a dialogue about the membership of a given string in the language under consideration between a prover and a refuter. We consider debates of partial and zero information, where the prover is prevented from seeing some or all of the messages of the refuter, as well as those of complete information. This model combines and generalizes the concepts of one-way interactive proof systems, games of possibly incomplete information, and probabilistically checkable debate systems. We give full characterizations of the classes of languages with debates checkable by verifiers operating under simultaneous bounds of O(1) space and O(1) random bits. It turns out such verifiers are strictly more powerful than their deterministic counterparts, and allowing a logarithmic space bound does not add to this power. PSPACE and EXPTIME have zero- and partial-information debates, respectively, checkable by constant-space verifiers for any desired error bound when we omit the randomness bound. No amount of randomness can give a verifier under only a fixed time bound a significant performance advantage over its deterministic counterpart. However, randomness does seem to help verifiers with simultaneous bounds on space and time. In the case of logspace and polynomial-time verifiers, we show that logarithmic randomness is sufficient to check complete- and partial-information debates for all languages in PSPACE. Any such language can be reduced to the quantified max word problem for matrices, which allows us to present a nonapproximability result for the optimization version of this problem.


Incomplete information debates Private alternation Games Probabilistic computation 



We are grateful to the anonymous reviewer for his helpful comments.


  1. 1.
    Ambainis, A., Watrous, J.: Two–way finite automata with quantum and classical states. Theor. Comput. Sci. 287(1), 299–311 (2002)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Arora, S., Barak, B.: Computational Complexity: A Modern Approach. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  3. 3.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Comput. Complex. 1(1), 3–40 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Babai, L., Moran, S.: Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity class. J. Comput. Syst. Sci. 36(2), 254–276 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Ben-Or, M., Goldwasser, S., Kilian, J., Wigderson, A.: Multi-prover interactive proofs: How to remove intractability assumptions. In: Proceedings of the 20th Annual ACM Symposium on Theory of Computing, STOC ’88, pp. 113–131. ACM (1988)Google Scholar
  7. 7.
    Chandra, A.K., Kozen, D.C., Stockmeyer, L.J. Alternation J. ACM. 28(1), 114–133 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Condon, A.: Computational Models of Games. MIT Press, Cambridge (1989)Google Scholar
  9. 9.
    Condon, A.: Space-bounded probabilistic game automata. J. ACM 38(2), 472–494 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Condon, A.: The complexity of the max word problem and the power of one-way interactive proof systems. Comput. Complex. 3(3), 292–305 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Condon, A., Feigenbaum, J., Lund, C., Shor, P.: Probabilistically checkable debate systems and approximation algorithms for PSPACE-hard functions (extended abstract). In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing, STOC ’93, pp. 305314. ACM, New York, USA (1993)Google Scholar
  12. 12.
    Condon, A., Ladner, R.: Interactive proof systems with polynomially bounded strategies. J. Comput. Syst. Sci. 50(3), 506–518 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Condon, A., Lipton, R.J.: On the complexity of space bounded interactive proofs. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, SFCS ’89, pp. 462–467. IEEE Computer Society, Los Alamitos (1989)CrossRefGoogle Scholar
  14. 14.
    Dwork, C., Stockmeyer, L.: Finite state verifiers I: The power of interaction. J. ACM 39(4), 800–828 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. J. Cryptol. 1(2), 77–94 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Feige, U., Goldwasser, S., Lovász, L., Safra, S., Szegedy, M.: Approximating clique is almost NP-complete (preliminary version). In: Proceedings of the 32nd Annual Symposium on Foundations of Computer Science, SFCS ’91, pp. 2–12. IEEE Computer Society, Los Alamitos (1991)Google Scholar
  17. 17.
    Feige, U., Kilian, J.: Making games short (extended abstract). In: Proceedings of the 29th Annual ACM Symposium on Theory of Computing, STOC ’97, pp. 506–516. ACM (1997)Google Scholar
  18. 18.
    Feige, U., Shamir, A.: Multi-oracle interactive protocols with space bounded verifiers. In: Structure in Complexity Theory Conference, pp. 158–164 (1989)Google Scholar
  19. 19.
    Feige, U., Shamir, A., Tennenholtz, M.: The noisy oracle problem. In: Advances in Cryptology - CRYPTO ’88, Lecture Notes in Computer Science, vol. 403, pp. 284–296. Springer–Verlag (1990)Google Scholar
  20. 20.
    Feigenbaum, J., Koller, D., Shor, P.: A game-theoretic classification of interactive complexity classes (extended abstract). In: Proceedings of the 10th Annual IEEE Conference on Computational Complexity, pp. 227–237 (1995)Google Scholar
  21. 21.
    Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J. Comput. Syst. Sci. 18(2), 194–211 (1979)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Freivalds, R.: Probabilistic two-way machines. In: Proceedings of the International Symposium on Mathematical Foundations of Computer Science, pp. 33–45 (1981)Google Scholar
  23. 23.
    Furer, M., Goldreich, O., Mansour, Y., Sipser, M., Zachos, S.: On completeness and soundness in interactive proof systems. In: Micali, S. (ed.): Advances in Computing Research 5: Randomness and Computation, pp. 429–442. JAI Press (1989)Google Scholar
  24. 24.
    Goldreich, O.: Computational Complexity: A Conceptual Perspective. Cambridge University Press, New York (2008)CrossRefGoogle Scholar
  25. 25.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity and a methodology of cryptographic protocol design. In: Proceedings of the 27th Annual Symposium on Foundations of Computer Science, SFCS ’86, pp. 174–187. IEEE Computer Society, Washington (1986)Google Scholar
  26. 26.
    Goldwasser, S., Sipser, M.: Private coins versus public coins in interactive proof systems. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing, STOC ’86, pp. 59–68. ACM (1986)Google Scholar
  27. 27.
    Hartmanis, J.: On non-determinancy in simple computing devices. Acta Informatica. 1, 336–344 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    King, K.N.: Alternating multihead finite automata. Theor. Comput. Sci. 61(2–3), 149–174 (1988)zbMATHCrossRefGoogle Scholar
  29. 29.
    Kiwi, M., Lund, C., Spielman, D., Russell, A., Sundaram, R.: Alternation in interaction. Comput. Complex. 9, 202–246 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Ladner, R.E., Lipton, R.J., Stockmeyer, L.J.: Alternating pushdown automata. In: Proceedings of 19th Annual IEEE Symposium on Foundations of Computer Science, pp. 92–106. IEEE Computer Society Press, Los Alamitos (1978)Google Scholar
  31. 31.
    Lipton, R.J.: Efficient checking of computations. In: Proceedings of the 7th Annual Symposium on Theoretical Aspects of Computer Science, STACS ’90. Springer-Verlag New York, Inc., New York (1990)Google Scholar
  32. 32.
    Macarie, I.I.: Multihead two-way probabilistic finite state automata. Theory Comput. Syst. (1997)Google Scholar
  33. 33.
    Paul, W.J., Prauß, E.J., Reischuk, R.: On alternation. In: Proceedings of the 19th Annual Symposium on Foundations of Computer Science, SFCS ’78. IEEE Computer Society, Washington (1978)Google Scholar
  34. 34.
    Peterson, G.L., Reif, J.H.: Multiple-person alternation. In: Proceedings of the 20th Annual Symposium on Foundations of Computer Science, SFCS ’79, pp. 348–363. IEEE Computer Society (1979)Google Scholar
  35. 35.
    Reif, J.H.: Universal games of incomplete information. In: Proceedings of the 11th Annual ACM Symposium on Theory of Computing, STOC ’79, pp. 288–308. ACM (1979)Google Scholar
  36. 36.
    Reif, J.H.: The complexity of two-player games of incomplete information. J. Comput. Syst. Sci. 29(2), 274–301 (1984)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Say, A.C.C.: Yakaryılmaz, A.: Finite state verifiers with constant randomness. In: How the World Computes, Lecture Notes in Computer Science, vol. 7318, pp. 646–654 (2012)Google Scholar
  38. 38.
    Shamir, A.: IP = PSPACE. J. ACM 39(4), 869–877 (1992)zbMATHCrossRefMathSciNetGoogle Scholar
  39. 39.
    Sipser, M.: Introduction to the Theory of Computation, 2nd edn. Thomson Course Technology, Boston (2006)Google Scholar
  40. 40.
    Yakaryılmaz, A., Say, A.C.C.: Unbounded-error quantum computation with small space bounds. Inf. Comput. 279(6), 873–892 (2011)CrossRefGoogle Scholar
  41. 41.
    Yakaryılmaz, A.: Public qubits versus private coins. In: The Proceedings of Workshop on Quantum and Classical Complexity, pp. 45–60. Univeristy of Latvia Press (2013). ECCC:TR12-130Google Scholar
  42. 42.
    Yakaryılmaz, A.: Quantum alternation. In: 8th International Computer Science Symposium in Russia, Proceedings, LNCS, vol. 7913, pp. 334–346. Springer (2013)Google Scholar
  43. 43.
    Yakaryılmaz, A., Say, A.C.C.: Succinctness of two-way probabilistic and quantum finite automata. Discret. Math. Theor. Comput. Sci. 12(4), 19–40 (2010)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • H. Gökalp Demirci
    • 1
    Email author
  • A. C. Cem Say
    • 2
  • Abuzer Yakaryılmaz
    • 3
  1. 1.Department of Computer ScienceUniversity of ChicagoChicagoUSA
  2. 2.Department of Computer EngineeringBoCemğaziçi UniversityİstanbulTurkey
  3. 3.Faculty of ComputingUniversity of LatviaRīgaLatvia

Personalised recommendations