Skip to main content
Log in

Feasible Analysis, Randomness, and Base Invariance

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We show that polynomial time randomness of a real number does not depend on the choice of a base for representing it. Our main tool is an ‘almost Lipschitz’ condition that we show for the cumulative distribution function associated to martingales with the savings property. Based on a result of Schnorr, we prove that for any base r, n⋅log2 n-randomness in base r implies normality in base r, and that n 4-randomness in base r implies absolute normality. Our methods yield a construction of an absolutely normal real number which is computable in polynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Algorithm 1
Algorithm 2
Fig. 1
Algorithm 3

Similar content being viewed by others

References

  1. Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizations over polynomial time computable sets. Theor. Comput. Sci. 51, 177–204 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ambos-Spies, K., Fleischhack, H., Huwig, H.: Diagonalizing over deterministic polynomial time. In: CSL. Lecture Notes in Computer Science, vol. 329, pp. 1–16 (1987)

    Chapter  Google Scholar 

  3. Ambos-Spies, K., Terwijn, S., Zheng, X.: Resource bounded randomness and weakly complete problems. Theor. Comput. Sci. 172, 195–207 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  4. Becher, V., Figueira, S.: An example of a computable absolutely normal number. Theor. Comput. Sci. 270, 947–958 (2002). doi:10.1016/S0304-3975(01)00170-0

    Article  MATH  MathSciNet  Google Scholar 

  5. Becher, V., Figueira, S., Picchi, R.: Turing’s unpublished algorithm for normal numbers. Theor. Comput. Sci. 377(1–3), 126–138 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Becher, V., Heiber, P., Slaman, T.A.: A polynomial-time algorithm for computing absolutely normal numbers. Manuscript (2013)

  7. Borel, E.: Les probabilités dénombrables et leurs applications arithmétiques. Rend. Circ. Mat. Palermo 27, 247–271 (1909)

    Article  MATH  Google Scholar 

  8. Brattka, V., Miller, J.S., Nies, A.: Randomness and differentiability (2011, to appear)

  9. Brown, G., Moran, W., Pearce, C.E.M.: A decomposition theorem for numbers in which the summands have prescribed normality properties. J. Number Theory 24(3), 259–271 (1986). doi:10.1016/0022-314X(86)90034-X

    Article  MATH  MathSciNet  Google Scholar 

  10. Calude, C.S., Jürgensen, H.: Randomness as an invariant for number representations. In: Maurer, J.K.H., Rozenberg, G. (eds.) Results and Trends in Theoretical Computer Science, pp. 44–66. Springer, Berlin (1994)

    Chapter  Google Scholar 

  11. Champernowne, D.G.: The construction of decimals in the scale of ten. J. Lond. Math. Soc. 8, 254–260 (1933)

    Article  MathSciNet  Google Scholar 

  12. Green, B., Tao, T.: The primes contain arbitrarily long arithmetic progressions. Ann. Math. 167(2), 481–547 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hertling, P., Weihrauch, K.: Randomness space. In: Automata, Languages and Programming, pp. 796–807. Springer, Berlin (1998)

    Chapter  Google Scholar 

  14. Hitchcock, J., Mayordomo, E.: Base invariance of feasible dimension. Manuscript (2012)

  15. Lutz, J.H.: Category and measure in complexity classes. SIAM J. Comput. 19(6), 1100–1131 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lutz, J.H.: Almost everywhere high nonuniform complexity. J. Comput. Syst. Sci. 44(2), 220–258 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lutz, J., Mayordomo, E.: Construction of an absolutely normal real number in polynomial time. Manuscript (2012)

  18. Martin-Löf, P.: The definition of random sequences. Inf. Control 9, 602–619 (1966)

    Article  MATH  Google Scholar 

  19. Nies, A.: Computability and Randomness. Clarendon Press, Oxford (2009)

    Book  MATH  Google Scholar 

  20. Schmidt, W.M.: On normal numbers. Pac. J. Math. 10, 661–672 (1960)

    Article  MATH  Google Scholar 

  21. Schnorr, C.P.: A unified approach to the definition of a random sequence. Math. Syst. Theory 5, 246–258 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schnorr, C.P.: Zufälligkeit und Wahrscheinlichkeit. Lecture Notes in Mathematics, vol. 218 (1971)

    Book  MATH  Google Scholar 

  23. Sierpinski, W.: Démonstration élémentaire du théorème de M. Borel sur les nombres absolument normaux et détermination effective d’un tel nombre. Bull. Soc. Math. Fr. 45, 127–132 (1917)

    MathSciNet  Google Scholar 

  24. Silveira, J.: Invariancia por cambio de base de la aleatoriedad computable y la aleatoriedad con recursos acotados. Ph.D. thesis, University of Buenos Aires (2011). Advisor: Santiago Figueira. Unpublished

  25. Staiger, L.: The Kolmogorov complexity of real numbers. In: Proceedings of the 12th International Symposium on Fundamentals of Computation Theory, FCT ’99, pp. 536–546. Springer, London (1999). http://dl.acm.org/citation.cfm?id=647899.740968

    Chapter  Google Scholar 

  26. Turing, A.M.: A note on normal numbers. In: Britton, J. (ed.) Collected Works of A.M. Turing: Pure Mathematics, pp. 117–119. North Holland, Amsterdam (1992)

    Google Scholar 

  27. Wang, Y.: Randomness and complexity. Ph.D. thesis, University of Heidelberg (1996)

Download references

Acknowledgements

We thank Verónica Becher, Pablo Heiber, Jack Lutz, Elvira Mayordomo and Theodore A. Slaman. We also thank the referee for careful reading and mindful suggestions. This research was partially carried out while the authors participated in the Buenos Aires Semester in Computability, Complexity and Randomness, 2013. Nies was supported by the Marsden fund of New Zealand. Figueira was supported by UBA (UBACyT 20020110100025) and ANPCyT (PICT-2011-0365).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santiago Figueira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Figueira, S., Nies, A. Feasible Analysis, Randomness, and Base Invariance. Theory Comput Syst 56, 439–464 (2015). https://doi.org/10.1007/s00224-013-9507-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9507-7

Keywords

Navigation