Skip to main content
Log in

Learning Read-Constant Polynomials of Constant Degree Modulo Composites

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class is not known to be learnable in any reasonable learning model.

In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable in the target polynomial appears in a constant number of monomials. Our algorithm extends to superconstant but low degree polynomials and still runs in quasipolynomial time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2

Similar content being viewed by others

Notes

  1. In an equivalence query, the learning algorithm emits some representation of a Boolean function and receives as answer either a Boolean assignment where it differs from the target function, or “yes” if no such assignment exists.

  2. Alternatively one could fix the same ordering, say 1,…,n for all monomials. However we find it natural to identify monomials that are identical up to a permutation of the variables.

  3. A DNF formula is read-k if every variable appears at most k times; a DNF formula is satisfy-j if no assignment satisfies more than j terms simultaneously.

References

  1. Aizenstein, H., Blum, A., Khardon, R., Kushilevitz, E., Pitt, L., Roth, D.: On learning read-k-satisfy-j dnf. SIAM J. Comput. 27(6), 1515–1530 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aizenstein, H., Hegedüs, T., Hellerstein, L., Pitt, L.: Complexity theoretic hardness results for query learning. Comput. Complex. 7(1), 19–53 (1998)

    Article  MATH  Google Scholar 

  3. Angluin, D., Hellerstein, L., Karpinski, M.: Learning read-once formulas with queries. J. ACM 40(1), 185–210 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  4. Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in NC1. J. Comput. Syst. Sci. 38(1), 150–164 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  5. Barrington, D.A.M., Beigel, R., Rudich, S.: Representing boolean functions as polynomials modulo composite numbers. Comput. Complex. 4, 367–382 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  6. Barrington, D.A.M., Straubing, H.: Superlinear lower bounds for bounded-width branching programs. J. Comput. Syst. Sci. 50(3), 374–381 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Barrington, D.A.M., Straubing, H., Thérien, D.: Non-uniform automata over groups. Inf. Comput. 89(2), 109–132 (1990)

    Article  MATH  Google Scholar 

  8. Barrington, D.A.M., Thérien, D.: Finite monoids and the finite structure of NC1. J. ACM 35(4), 941–952 (1988)

    Article  Google Scholar 

  9. Beimel, A., Bergadano, F., Bshouty, N., Kushilevitz, E., Varricchio, S.: Learning functions represented as multiplicity automata. J. ACM 47, 506–530 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bourgain, J.: Estimation of certain exponential sums arising in complexity theory. C. R. Math. Acad. Sci. 340(9), 627–631 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  11. Braverman, M., Rao, A., Raz, R., Yehudayoff, A.: Pseudorandom generators for regular branching programs. In: 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 40–47. IEEE Comput. Soc., Los Alamitos (2010)

    Google Scholar 

  12. Brody, J., Verbin, E.: The coin problem, and pseudorandomness for branching programs. In: 51th Annual IEEE Symposium on Foundations of Computer Science, pp. 30–39. IEEE Comput. Soc., Los Alamitos (2010)

    Google Scholar 

  13. Bshouty, N., Tamon, C., Wilson, D.: Learning matrix functions over rings. Algorithmica 22, 91–111 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Chattopadhyay, A.: Multilinear polynomials modulo composites. In: Bulletin of the European Association on Theoretical Computer Science, Computational Complexity Column, vol. 100 (2010)

    Google Scholar 

  15. Efremenko, K.: 3-query locally decodable codes of subexponential length. In: 41st Annual Symposium on Theory of Computing, pp. 39–44. ACM, New York (2009)

    Chapter  Google Scholar 

  16. Gavaldà, R., Thérien, D.: An algebraic perspective on boolean function learning. In: Algorithmic Learning Theory, 20th International Conference, ALT 2009. LNCS, pp. 201–215. Springer, Berlin (2009)

    Google Scholar 

  17. Gopalan, P.: Constructing Ramsey graphs from boolean function representations. In: 21st Annual IEEE Conference on Computational Complexity, pp. 115–128. IEEE Comput. Soc., Los Alamitos (2006)

    Google Scholar 

  18. Grolmusz, V.: On the weak mod m representation of boolean functions. Chic. J. Theor. Comput. Sci. (1995)

  19. Helmbold, D.P., Sloan, R.H., Warmuth, M.K.: Learning nested differences of intersection-closed concept classes. Mach. Learn. 5, 165–196 (1990)

    Google Scholar 

  20. Koucký, M., Nimbhorkar, P., Pudlák, P.: Pseudorandom generators for group products. In: 43rd Annual ACM Symposium on Theory of Computing, pp. 263–272. ACM, New York (2011)

    Google Scholar 

  21. Péladeau, P., Thérien, D.: Sur les langages reconnus par des groupes nilpotents. C. R. Math. Acad. Sci. Paris 306(2), 93–95 (1988)

    MATH  Google Scholar 

  22. Péladeau, P., Thérien, D.: On the languages recognized by nilpotent groups (a translation of “Sur les langages reconnus par des groupes nilpotents” [21]). Electron. Colloq. Comput. Complex. 8(40) (2001)

  23. Pillaipakkamnatt, K., Raghavan, V.V.: Read-twice dnf formulas are properly learnable. Inf. Comput. 122(2), 236–267 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  24. Razborov, A.A.: Lower bounds on the size of bounded-depth networks over a complete basis with logical addition. Math. Notes Acad. Sci. USSR 41(3), 333–338 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  25. Schapire, R.E., Sellie, L.: Learning sparse multivariate polynomials over a field with queries and counterexamples. J. Comput. Syst. Sci. 52(2), 201–213 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  26. Smolensky, R.: Algebraic methods in the theory of lower bounds for boolean circuit complexity. In: 19th Annual ACM Symposium on Theory of Computing, pp. 77–82. ACM, New York (1987)

    Google Scholar 

  27. Tardos, G., Barrington, D.A.M.: A lower bound on the MOD-6 degree of the OR function. Comput. Complex. 7(2), 99–108 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

A. Chattopadhyay was at the University of Toronto when this work was written up, partially supported by a Natural Sciences and Engineering Research Council (NSERC) postdoctoral fellowship, an Ontario Ministry of Research and Innovation fellowship and research grants of Prof. T. Pitassi. R. Gavaldà is partially funded by the Spanish MICINN projects TIN-2008-06582-C03-01 (SESAAME) and TIN2011-27479-C04-03 (BASMATI), by the Generalitat de Catalunya SGR2009-1428 (LARCA), and by the EU PASCAL2 Network of Excellence (FP7-ICT-216886). We thank the anonymous reviewers for their useful comments that improved the presentation. In particular, Remark 5 was pointed out by a reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricard Gavaldà.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chattopadhyay, A., Gavaldà, R., Hansen, K.A. et al. Learning Read-Constant Polynomials of Constant Degree Modulo Composites. Theory Comput Syst 55, 404–420 (2014). https://doi.org/10.1007/s00224-013-9488-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-013-9488-6

Keywords

Navigation