Skip to main content
Log in

Normalized Range Voting Broadly Resists Control

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We study the behavior of Range Voting and Normalized Range Voting with respect to electoral control. Electoral control encompasses attempts from an election chair to alter the participation or structure of an election in order to change the outcome. We show that a voting system resists a case of control by proving that performing that case of control is computationally hard. Range Voting is a natural extension of approval voting, and Normalized Range Voting is a simple variant which alters each vote to maximize the potential impact of each voter. We show that Normalized Range Voting has among the largest known number of control resistances among natural voting systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Note that since k-NRV is resistant to deletion of candidates for k=2, this reduction shows resistance for 4-NRV.

References

  1. Arrow, K.: A difficulty in the concept of social welfare. J. Polit. Econ. 58(4), 328–346 (1950)

    Article  Google Scholar 

  2. Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J., Sanver, R. (eds.) Handbook of Approval Voting, pp. 199–251. Springer, Berlin (2010)

    Chapter  Google Scholar 

  3. Brelsford, E., Faliszewski, P., Hemaspaandra, E., Schnoor, H., Schnoor, I.: Approximability of manipulating elections. In: Proceedings of the 23rd AAAI Conference on Artificial Intelligence, July 2008, pp. 44–49 (2008)

    Google Scholar 

  4. Betzler, N., Niedermeier, R., Woeginger, G.: Unweighted coalitional manipulation under the Borda rule is NP-hard. In: Proceedings of the 22nd International Joint Conference on Artificial Intelligence, pp. 55–60 (2011)

    Google Scholar 

  5. Bartholdi, J. III, Tovey, C., Trick, M.: The computational difficulty of manipulating an election. Soc. Choice Welf. 6(3), 227–241 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bartholdi, J. III, Tovey, C., Trick, M.: How hard is it to control an election? Math. Comput. Model. 16(8/9), 27–40 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related digraph problems. In: Proceedings of the 2nd Annual International Conference on Combinatorial Optimization and Applications. Lecture Notes in Computer Science, vol. 5156, pp. 43–53. Springer, Berlin (2008)

    Chapter  Google Scholar 

  8. Conitzer, V., Sandholm, T.: Complexity of manipulating elections with few candidates. In: Proceedings of the 18th National Conference on Artificial Intelligence, July/August 2002, pp. 314–319 (2002)

    Google Scholar 

  9. Conitzer, V., Sandholm, T.: Nonexistence of voting rules that are usually hard to manipulate. In: Proceedings of the 21st National Conference on Artificial Intelligence, pp. 627–634. AAAI Press, Menlo Park (2006)

    Google Scholar 

  10. Davies, J., Katsirelos, G., Narodytska, N., Walsh, T.: Complexity of and algorithms for Borda manipulation. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence, August (2011)

    Google Scholar 

  11. Duggan, J., Schwartz, T.: Strategic manipulability without resoluteness or shared beliefs: Gibbard–Satterthwaite generalized. Soc. Choice Welf. 17(1), 85–93 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  12. Erdélyi, G., Fellows, M.: Parameterized control complexity in bucklin voting and in fallback voting. In: Proceedings of the 3rd International Workshop on Computational Social Choice, pp. 163–174 (2010)

    Google Scholar 

  13. Erdélyi, G., Hemaspaandra, L., Rothe, J., Spakowski, H.: Generalized juntas and NP-hard sets. Theor. Comput. Sci. 410(38–40), 3995–4000 (2009)

    Article  MATH  Google Scholar 

  14. Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting fully resists constructive control and broadly resists destructive control. Math. Log. Q. 55(4), 425–443 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Erdélyi, G., Piras, L., Rothe, J.: The complexity of voter partition in Bucklin and fallback voting: solving three open problems. In: Proceedings of the 10th International Conference on Autonomous Agents and Multiagent Systems, pp. 837–844 (2011)

    Google Scholar 

  16. Erdélyi, G., Rothe, J.: Control complexity in fallback voting. In: Proceedings of Computing: The 16th Australasian Theory Symposium, pp. 39–48 (2010)

    Google Scholar 

  17. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of bribery in elections. J. Artif. Intell. Res. 35, 485–532 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Llull and Copeland voting computationally resist bribery and constructive control. J. Artif. Intell. Res. 35, 275–341 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: Societies with single-peaked preferences are more open to manipulation and control. Inf. Comput. 209(2), 89–107 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Friedgut, E., Kalai, G., Nisan, N.: Elections can be manipulated often. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, October 2008, pp. 243–249 (2008)

    Google Scholar 

  21. Gibbard, A.: Manipulation of voting schemes. Econometrica 41(4), 587–601 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  22. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  23. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: The complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Hybrid elections broaden complexity-theoretic resistance to control. Math. Log. Q. 55(4), 397–424 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hillinger, C.: The case for utilitarian voting. Discussion Papers in Economics 653, University of Munich, Department of Economics, May (2005)

  26. Isaksson, M., Kindler, G., Mossel, E.: The geometry of manipulation—a quantitative proof of the Gibbard-Satterthwaite theorem. Combinatorica 32(2), 221–250 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Liu, H., Feng, H., Zhu, D., Luan, J.: Parameterized computational complexity of control problems in voting systems. Theor. Comput. Sci. 410(27–29), 2746–2753 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, H., Zhu, D.: Parameterized complexity of control problems in maximin election. Inf. Process. Lett. 110(10), 383–388 (2010)

    Article  MATH  Google Scholar 

  29. Mossel, E., Procaccia, A., Rácz, M.: A smooth transition from powerlessness to absolute power. Technical Report (2012). arXiv:1205.2074 [cs.GT]

  30. Mossel, E., Rácz, M.: A quantitative Gibbard-Satterthwaite theorem without neutrality. In: Proceedings of the 44th ACM Symposium on Theory of Computing, May 2012, pp. 1041–1060 (2012)

    Google Scholar 

  31. Procaccia, A., Rosenschein, J.: Average-case tractability of manipulation in voting via the fraction of manipulators. In: Proceedings of the 6th International Joint Conference on Autonomous Agents and Multiagent Systems, pp. 718–720 (2007)

    Google Scholar 

  32. Procaccia, A., Rosenschein, J.: Junta distributions and the average-case complexity of manipulating elections. J. Artif. Intell. Res. 28, 157–181 (2007)

    MathSciNet  MATH  Google Scholar 

  33. Parkes, D., Xia, L.: A complexity-of-strategic-behavior comparison between Schulze’s rule and ranked pairs. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence, pp. 1429–1435 (2012)

    Google Scholar 

  34. Satterthwaite, M.: Strategy-proofness and Arrow’s conditions: existence and correspondence theorems for voting procedures and social welfare functions. J. Econ. Theory 10(2), 187–217 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  35. Smith, W.: Range voting. http://web.archive.org/web/20090326062716/. http://math.temple.edu/~wds/homepage/rangevote.pdf, November 2000

  36. Walsh, T.: Where are the hard manipulation problems? J. Artif. Intell. Res. 42, 1–29 (2011)

    MATH  Google Scholar 

  37. Xia, L., Conitzer, V.: Generalized scoring rules and the frequency of coalitional manipulability. In: Proceedings of the 9th ACM Conference on Electronic Commerce, July 2008, pp. 109–118 (2008)

    Google Scholar 

  38. Xia, L.: How many vote operations are needed to manipulate a voting system? In: Proceedings of the 4th International Workshop on Computational Social Choice, September (2012)

    Google Scholar 

  39. Zuckerman, M., Procaccia, A., Rosenschein, J.: Algorithms for the coalitional manipulation problem. Artif. Intell. 173(2), 392–412 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

For helpful comments and suggestions, I am grateful to Edith Hemaspaandra, who advised my M.S. thesis in which an earlier version of part of this work appeared, Lane A. Hemaspaandra, Preetjot Singh, Andrew Lin, and the anonymous ToCS referees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Curtis Menton.

Additional information

Supported in part by NSF grants CCF-0426761, IIS-0713061, CCF-0915792, and CCF-1101479.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Menton, C. Normalized Range Voting Broadly Resists Control. Theory Comput Syst 53, 507–531 (2013). https://doi.org/10.1007/s00224-012-9441-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-012-9441-0

Keywords

Navigation