Skip to main content
Log in

Dimension, Halfspaces, and the Density of Hard Sets

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We use the connection between resource-bounded dimension and the online mistake-bound model of learning to show that the following classes have polynomial-time dimension zero.

  1. 1.

    The class of problems which reduce to nondense sets via a majority reduction.

  2. 2.

    The class of problems which reduce to nondense sets via an iterated reduction that composes a bounded-query truth-table reduction with a conjunctive reduction.

Intuitively, polynomial-time dimension is a means of quantifying the size and complexity of classes within the exponential time complexity class E. The class P has dimension 0, E itself has dimension 1, and any class with dimension less than 1 cannot contain E. As a corollary, it follows that all sets which are hard for E under these types of reductions are exponentially dense. The first item subsumes two previous results and the second item answers a question of Lutz and Mayordomo. Our proofs use Littlestone’s Winnow2 algorithm for learning r-of-k threshold functions and Maass and Turán’s algorithm for learning halfspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agrawal, M., Arvind, V.: Geometric sets of low information content. Theor. Comput. Sci. 158(12), 193–219 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arvind, V., Han, Y., Hemachandra, L., Köbler, J., Lozano, A., Mundhenk, M., Ogiwara, M., Schöning, U., Silvestri, R., Thierauf, T.: Reductions to sets of low information content. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory: Current Research, pp. 1–45. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Athreya, K.B., Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: Effective strong dimension in algorithmic information and computational complexity. SIAM J. Comput. 37(3), 671–705 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fu, B.: With quasilinear queries EXP is not polynomial time Turing reducible to sparse sets. SIAM J. Comput. 24(5), 1082–1090 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Fu, B.: Personal communication (2006)

  6. Hitchcock, J.M.: Online learning and resource-bounded dimension: winnow yields new lower bounds for hard sets. SIAM J. Comput. 36(6), 1696–1708 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hitchcock, J.M., Lutz, J.H., Mayordomo, E.: The fractal geometry of complexity classes. SIGACT News 36(3), 24–38 (2005)

    Article  Google Scholar 

  8. Lindner, W., Schuler, R., Watanabe, O.: Resource-bounded measure and learnability. Theory Comput. Syst. 33(2), 151–170 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1987)

    Google Scholar 

  10. Lutz, J.H.: Almost everywhere high nonuniform complexity. J. Comput. Syst. Sci. 44(2), 220–258 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lutz, J.H.: The quantitative structure of exponential time. In: Hemaspaandra, L.A., Selman, A.L. (eds.) Complexity Theory Retrospective II, pp. 225–254. Springer, Berlin (1997)

    Chapter  Google Scholar 

  12. Lutz, J.H.: Dimension in complexity classes. SIAM J. Comput. 32(5), 1236–1259 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lutz, J.H., Mayordomo, E.: Measure, stochasticity, and the density of hard languages. SIAM J. Comput. 23(4), 762–779 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lutz, J.H., Mayordomo, E.: Twelve problems in resource-bounded measure. Bull. Eur. Assoc. Theor. Comput. Sci. 68, 64–80 (1999). Also in Current Trends in Theoretical Computer Science: Entering the 21st Century, pp. 83–101. World Scientific, Singapore (2001)

    MathSciNet  MATH  Google Scholar 

  15. Lutz, J.H., Zhao, Y.: The density of weakly complete problems under adaptive reductions. SIAM J. Comput. 30(4), 1197–1210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maass, W., Turán, G.: How fast can a threshold gate learn? In: Hanson, S.J., Drastal, G.A., Rivest, R.L. (eds.) Computational Learning Theory and Natural Learning Systems, vol. I: Constraints and Prospects, pp. 381–414. MIT Press, Cambridge (1994)

    Google Scholar 

  17. Vaidya, P.M.: A new algorithm for minimizing convex functions over convex sets. In: Proceedings of the 30th IEEE Symposium on Foundations of Computer Science, pp. 338–349. IEEE Computer Society, Los Alamitos (1989)

    Google Scholar 

  18. Watanabe, O.: Polynomial time reducibility to a set of small density. In: Proceedings of the Second Structure in Complexity Theory Conference, pp. 138–146. IEEE Computer Society, Los Alamitos (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John M. Hitchcock.

Additional information

This research was supported in part by NSF grants 0515313 and 0652601.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harkins, R.C., Hitchcock, J.M. Dimension, Halfspaces, and the Density of Hard Sets. Theory Comput Syst 49, 601–614 (2011). https://doi.org/10.1007/s00224-010-9288-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-010-9288-1

Keywords

Navigation