Advertisement

Theory of Computing Systems

, Volume 47, Issue 3, pp 786–807 | Cite as

Quantum Search with Variable Times

  • Andris AmbainisEmail author
Article

Abstract

Since Grover’s seminal work, quantum search has been studied in great detail. In the usual search problem, we have a collection of n items x 1,…,x n and we would like to find i:x i =1. We consider a new variant of this problem in which evaluating x i for different i may take a different number of time steps.

Let t i be the number of time steps required to evaluate x i . If the numbers t i are known in advance, we give an algorithm that solves the problem in \(O(\sqrt{t_{1}^{2}+t_{2}^{2}+\ldots+t_{n}^{2}})\) steps. This is optimal, as we also show a matching lower bound. The case, when t i are not known in advance, can be solved with a polylogarithmic overhead. We also give an application of our new search algorithm to computing read-once functions.

Keywords

Quantum search Quantum algorithms 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aaronson, S., Ambainis, A.: Quantum search of spatial regions. Theory Comput. 1, 47–79 (2005). quant-ph/0303041 CrossRefMathSciNetGoogle Scholar
  2. 2.
    Ambainis, A.: Quantum search algorithms. SIGACT News 35, 22–35 (2004). quant-ph/0504012 CrossRefGoogle Scholar
  3. 3.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37, 210–239 (2007). Also FOCS’04 and quant-ph/0311001 zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ambainis, A., Childs, A., Reichardt, B., Spalek, R., Zhang, S.: Any AND-OR formula of size N can be evaluated in time N 1/2+o(1) on a quantum computer. In: Proceedings of FOCS’07, pp. 363–372 (2007) Google Scholar
  5. 5.
    Barnum, H., Saks, M.: A lower bound on the quantum complexity of read once functions. J. Comput. Syst. Sci. 69, 244–258 (2004) zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brassard, G., Høyer, P., Tapp, A.: Quantum counting. In: Proceedings of ICALP’98, pp. 820–831 (1998). quant-ph/9805082
  7. 7.
    Brassard, G., Høyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. In: Quantum Computation and Quantum Information Science. AMS Contemporary Mathematics Series, vol. 305, pp. 53–74. AMS, Providence (2002). quant-ph/0005055 Google Scholar
  8. 8.
    Buhrman, H., Špalek, R.: Quantum verification of matrix products. In: Proceedings of SODA’06, pp. 880–889 (2006). quant-ph/0409035
  9. 9.
    Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. classical communication and computation. In: Proceedings of STOC’98, pp. 63–68 (1998). quant-ph/9702040
  10. 10.
    Buhrman, H., Durr, C., Heiligman, M., Høyer, P., Magniez, F., Santha, M., de Wolf, R.: Quantum algorithms for element distinctness. SIAM J. Comput. 34(6), 1324–1330 (2005). quant-ph/0007016 zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Farhi, E., Goldstone, J., Gutman, S.: A quantum algorithm for the Hamiltonian NAND tree. quant-ph/0702144
  12. 12.
    Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of STOC’96, pp. 212–219 (1996) Google Scholar
  13. 13.
    Høyer, P., Mosca, M., de Wolf, R.: Quantum search on bounded-error inputs. In: Proceedings of ICALP’03. Lecture Notes in Computer Science, vol. 2719, pp. 291–299. Springer, Berlin (2003). quant-ph/0304052 Google Scholar
  14. 14.
    Høyer, P., Lee, T., Špalek, R.: Tight adversary bounds for composite functions. quant-ph/0509067
  15. 15.
    Magniez, F., Nayak, A.: Quantum complexity of testing group commutativity. Algorithmica 48(3), 221–232 (2007). Also ICALP’05 and quant-ph/0506265 zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Magniez, F., Santha, M., Szegedy, M.: Quantum algorithms for the triangle problem. SIAM J. Comput. 37(2), 413–424 (2007). Also SODA’05 and quant-ph/0310134 zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Reichardt, B., Spalek, R.: Span-program-based quantum algorithm for evaluating formulas. In: Proceedings of STOC’2008, pp. 103–112 (2008) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Faculty of ComputingUniversity of LatviaRigaLatvia

Personalised recommendations