Skip to main content

Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?


The class TFNP, defined by Megiddo and Papadimitriou, consists of multivalued functions with values that are polynomially verifiable and guaranteed to exist. Do we have evidence that such functions are hard, for example, if TFNP is computable in polynomial-time does this imply the polynomial-time hierarchy collapses? By computing a multivalued function in deterministic polynomial-time we mean on every input producing one of the possible values of the function on that input.

We give a relativized negative answer to this question by exhibiting an oracle under which TFNP functions are easy to compute but the polynomial-time hierarchy is infinite. We also show that relative to this same oracle, P≠UP and TFNPNP functions are not computable in polynomial-time with an NP oracle.


  1. Baker, T., Gill, J., Solovay, R.: Relativization of P=NP question. SIAM J. Comput. 4(4), 431–442 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bellare, M., Goldwasser, S.: The complexity of decision versus search. SIAM J. Comput. 23(1), 97–119 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fenner, S., Fortnow, L., Naik, A., Rogers, J.: Inverting onto functions. Inf. Comput. 186, 90–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fortnow, L., Rogers, J.: Separability and one-way functions. Comput. Complex. 11, 137–157 (2003)

    Article  MathSciNet  Google Scholar 

  5. Grollman, J., Selman, A.: Complexity measures for public-key cryptosystems. SIAM J. Comput. 17(2), 309–335 (1988)

    Article  MathSciNet  Google Scholar 

  6. Håstad, J.: Almost optimal lower bounds for small depth circuits. Adv. Comput. Res. 5, 143–170 (1989)

    Google Scholar 

  7. Impagliazzo, R., Naor, M.: Decision trees and downward closures. In: Proceedings of the 3rd IEEE Structure in Complexity Theory Conference, pp. 29–38. IEEE, New York (1988)

    Chapter  Google Scholar 

  8. Kolmogorov, A.N.: Three approaches to the quantitative definition of information. Probl. Inf. Trans. 1(1), 1–7 (1965)

    MathSciNet  Google Scholar 

  9. Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications, 2nd edn. Graduate Texts in Computer Science. Springer, New York (1997)

    MATH  Google Scholar 

  10. Megiddo, N., Papadimitriou, C.: On total functions, existence theorems and computational complexity. Theor. Comput. Sci. 81(2), 317–324 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Meyer, A., Stockmeyer, L.: The equivalence problem for regular expressions with squaring requires exponential space. In: Proceedings of the 13th IEEE Symposium on Switching and Automata Theory, pp. 125–129. IEEE, New York (1972)

    Chapter  Google Scholar 

  12. Muchnik, A., Vereshchagin, N.: A general method to construct oracles realizing given relationships between complexity classes. Theor. Comput. Sci. 157, 227–258 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Papadimitriou, C.: Computational Complexity. Addison-Wesley, New York (1994)

    MATH  Google Scholar 

  14. Sipser, M.: Borel sets and circuit complexity. In: Proceedings of the 15th ACM Symposium on the Theory of Computing, pp. 61–69. ACM, New York (1983)

    Google Scholar 

  15. Sipser, M.: Introduction to the Theory of Computation. PWS, Boston (1997)

    MATH  Google Scholar 

  16. Solomonoff, R.J.: A formal theory of inductive inference, parts 1 and 2. Inf. Control 7, 1–22, 224–254 (1964)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to John D. Rogers.

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (, which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Buhrman, H., Fortnow, L., Koucký, M. et al. Does the Polynomial Hierarchy Collapse if Onto Functions are Invertible?. Theory Comput Syst 46, 143 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


  • Computational complexity
  • Polynomial-time hierarchy
  • Multi-valued functions
  • Kolmogorov complexity