Skip to main content
Log in

On the Complexity of Matrix Rank and Rigidity

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

We revisit a well studied linear algebraic problem, computing the rank and determinant of matrices, in order to obtain completeness results for small complexity classes. In particular, we prove that computing the rank of a class of diagonally dominant matrices is complete for \(\textsf{L}\) . We show that computing the permanent and determinant of tridiagonal matrices over ℤ is in \(\textsf {Gap} \textsf {NC}^{1}\) and is hard for \(\textsf {NC}^{1}\) . We also initiate the study of computing the rigidity of a matrix: the number of entries that needs to be changed in order to bring the rank of a matrix below a given value. We show that some restricted versions of the problem characterize small complexity classes. We also look at a variant of rigidity where there is a bound on the amount of change allowed. Using ideas from the linear interval equations literature, we show that this problem is \(\textsf {NP}\) -hard over ℚ and that a certain restricted version is \(\textsf {NP}\) -complete. Restricting the problem further, we obtain variations which can be computed in \(\textsf {PL}\) and are hard for \(\textsf {C}_{=}\textsf {L}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allender, E., Ambainis, A., Mix Barrington, D.A., Datta, S., LeThanh, H.: Bounded-depth arithmetic circuits: counting and closure. In: Proc. 26th ICALP. Lecture Notes in Computer Science, vol. 1644, pp. 149–158. Springer, Berlin (1999)

    Google Scholar 

  2. Allender, E., Arvind, V., Mahajan, M.: Arithmetic complexity, Kleene closure, and formal power series. Theory Comput. Syst. 36(4), 303–328 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  3. Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  4. Àlvarez, C., Greenlaw, R.: A compendium of problems complete for symmetric logarithmic space. Comput. Complex., 9, 73–95 (2000)

    Article  Google Scholar 

  5. Allender, E.: Arithmetic circuits and counting complexity classes. In: Krajicek, J. (ed.) Complexity of Computations and Proofs. Quaderni di Matematica, vol. 13, pp. 33–72. Seconda Universita di Napoli, Napoli (2004)

    Google Scholar 

  6. Allender, E., Ogihara, M.: Relationships among PL, #l, and the determinant. RAIRO Theor. Inform. Appl. 30(1), 1–21 (1996)

    MathSciNet  MATH  Google Scholar 

  7. Buntrock, G., Damm, C., Hertrampf, U., Meinel, C.: Structure and importance of logspace MOD-classes. Math. Syst. Theory 25, 223–237 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Buss, J.F., Frandsen, G.S., Shallit, J.: The computational complexity of some problems of linear algebra. J. Comput. Syst. Sci. 58, 572–596 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bollobas, B.: Modern Graph Theory. GTM, vol. 184. Springer, Berlin (1984)

    Google Scholar 

  10. Cook, S.A., McKenzie, P.: Problems complete for L. J. Algorithms 8, 385–394 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  11. Caussinus, H., McKenzie, P., Thérien, D., Vollmer, H.: Nondeterministic \(\textsf{NC}^{1}\) computation. J. Comput. Syst. Sci. 57, 200–212 (1998)

    Article  MATH  Google Scholar 

  12. Dahl, G.: A note on nonnegative diagonally dominant matrices. Linear Algebra Appl. 317, 217–224 (1999)

    Article  MathSciNet  Google Scholar 

  13. Damm, C.: DET = L(#L). Technical Report Informatik-Preprint 8, Fachbereich Informatik der Humboldt–Universität zu Berlin (1991)

  14. Deshpande, A.: Sampling-based dimension reduction algorithms. PhD thesis, MIT, May 2007

  15. Geelen, J.F.: Maximum rank matrix completion. Linear Algebra Appl. 288(1–3), 211–217 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  17. Grigoriev, D.Y.: Using the Notions of Separability and Independence for Proving the Lower Bounds on the Circuit Complexity. Notes of the Leningrad Branch of the Steklov Mathematical Institute. Nauka, Moscow (1976) (in Russian)

    Google Scholar 

  18. Kulkarni, R.: Personal communication, January 2007

  19. Laurent, M.: Matrix completion problems. In: Floudas, C.A., Pardalos, P.M. (eds.) The Encyclopedia of Optimization, vol. 3, pp. 221–229. Kluwer, Dordrecht (2001)

    Google Scholar 

  20. Lokam, S.V.: Spectral methods for matrix rigidity with applications to size-depth tradeoffs and communication complexity. In: Proc. 36th FOCS, pp. 6–15, 1995; J. Comput. Syst. Sci. 63(3):449–473 (2001)

  21. Marcus, M., Minc, H.: A Survey of Matrix Theory and Matrix inequalities. The Prindle, Weber and Schmidt Complementary Series in Mathematics, vol. 14. Allyn and Bacon, Boston (1964)

    MATH  Google Scholar 

  22. Mulmuley, K.: A fast parallel algorithm to compute the rank of a matrix over an arbitrary field. Combinatorica 7, 101–104 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Murota, K.: Mixed matrices—irreducibility and decomposition. In: Brualdi, R.A., Friedland, S., Klee, V. (eds.) Combinatorial and Graph-Theoretic Problems in Linear Algebra. The IMA Volumes in Mathematics and Its Applications, vol. 50, pp. 39–71. Springer, Berlin (1993)

    Google Scholar 

  24. Mahajan, M., Vinay, V.: Determinant: combinatorics, algorithms, complexity. Chic. J. Theor. Comput. Sci. 5 (1997)

  25. Nisan, N., Ta-Shma, A.: Symmetric logspace is closed under complement. Chic. J. Theor. Comput. Sci., (1995).

  26. Poljak, S., Rohn, J.: Checking robust nonsingularity is \(\textsf {NP}\) -hard. Math. Control Signals Syst. 6, 1–9 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Reingold, O.: Undirected st-conenctivity in logspace. In Proc. 37th STOC, pp. 376–385 (2005).

  28. Rohn, J.: Systems of linear interval equations. Linear Algebra Appl. 126, 39–78 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rohn, J.: Checking positive definiteness or stability of symmetric interval matrices is NP-hard. Comment. Math. Univ. Carol. 35, 795–797 (1994)

    MathSciNet  MATH  Google Scholar 

  30. Razborov, A.A., Rudich, S.: Natural proofs. J. Comput. Syst. Sci. 55(1), 24–35 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Toda, S.: Counting problems computationally equivalent to the determinant. Technical Report CSIM 91-07, Dept. of Comput. Sci. & Information Mathematics, Univ of Electro-Communications, Chofu-shi, Tokyo (1991)

  32. Valiant, L.G.: Graph theoretic arguments in low-level complexity. In: Proc. 6th MFCS. Lecture Notes in Computer Science, vol. 53, pp. 162–176. Springer, Berlin (1977)

    Google Scholar 

  33. Valiant, L.G.: Why is Boolean complexity theory difficult? In: Proceedings of the London Mathematical Society symposium on Boolean function complexity, pp. 84–94. Cambridge University Press, New York (1992)

    Google Scholar 

  34. Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proc. 6th Structure in Complexity Theory Conference. Lecture Notes in Computer Science, vol. 223, pp. 270–284. Springer, Berlin (1991)

    Chapter  Google Scholar 

  35. Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Berlin (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meena Mahajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, M., Sarma, J.M.N. On the Complexity of Matrix Rank and Rigidity. Theory Comput Syst 46, 9–26 (2010). https://doi.org/10.1007/s00224-008-9136-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-008-9136-8

Keywords

Navigation