Skip to main content

Class Constrained Bin Covering

Abstract

We study the following variant of the bin covering problem. We are given a set of unit sized items, where each item has a color associated with it. We are given an integer parameter k≥1 and an integer bin size Bk. The goal is to assign the items (or a subset of the items) into a maximum number of subsets of at least B items each, such that in each such subset the total number of distinct colors of items is at least k. We study both the offline and the online variants of this problem. We first design an optimal polynomial time algorithm for the offline problem. For the online problem we give a lower bound of 1+H k−1 (where H k−1 denotes the (k−1)-th harmonic number), and an O(k)-competitive algorithm. Finally, we analyze the performance of the natural heuristic First fit.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Assmann, S.F.: Problems in discrete applied mathematics. Ph.D.Tthesis, Mathematics Department, Massachusetts Institute of Technology, Cambridge, MA (1983)

  2. 2.

    Assmann, S.F., Johnson, D.S., Kleitman, D.J., Leung, J.Y.-T.: On a dual version of the one-dimensional bin packing problem. J. Algorithms 5, 502–525 (1984)

    MATH  Article  MathSciNet  Google Scholar 

  3. 3.

    Babel, L., Chen, B., Kellerer, H., Kotov, V.: Algorithms for on-line bin-packing problems with cardinality constraints. Discrete Appl. Math. 143(1–3), 238–251 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4.

    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  5. 5.

    Caprara, A., Kellerer, H., Pferschy, U.: Approximation schemes for ordered vector packing problems. Nav. Res. Logist. 92, 58–69 (2003)

    Article  MathSciNet  Google Scholar 

  6. 6.

    Coffman, E.G., Garey, M.R., Johnson, D.S.: Approximation algorithms for bin packing: A survey. In: Hochbaum, D. (ed.) Approximation Algorithms. PWS-Kent, Boston (1997)

    Google Scholar 

  7. 7.

    Coffman, E.G. Jr., Csirik, J.: Performance guarantees for one-dimensional bin packing. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, Chap. 32, pp. 32-1–32-18. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  8. 8.

    Csirik, J., Johnson, D.S., Kenyon, C.: Better approximation algorithms for bin covering. In: Proc. of the 12th Annual Symposium on Discrete Algorithms (SODA2001), pp. 557–566 (2001)

  9. 9.

    Csirik, J., Leung, J.Y.-T.: Variable-sized bin packing and bin covering. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, Chap. 34, pp. 34-1–34-11. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  10. 10.

    Csirik, J., Leung, J.Y.-T.: Variants of classical one-dimensional bin packing. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics, Chap. 33, pp. 33-1–33-13. Chapman & Hall/CRC, Boca Raton (2007)

    Google Scholar 

  11. 11.

    Csirik, J., Totik, V.: On-line algorithms for a dual version of bin packing. Discrete Appl. Math. 21, 163–167 (1988)

    MATH  Article  MathSciNet  Google Scholar 

  12. 12.

    Csirik, J., Woeginger, G.J.: On-line packing and covering problems. In: Fiat, A., Woeginger, G.J. (eds.) Online Algorithms: The State of the Art, Chap. 7, pp. 147–177. Springer, Berlin (1998)

    Chapter  Google Scholar 

  13. 13.

    Epstein, L., Imreh, C., Levin, A.: Bin covering with cardinality constraints. Manuscript (2007)

  14. 14.

    Golubchik, L., Khanna, S., Khuller, S., Thurimella, R., Zhu, A.: Approximation algorithms for data placement on parallel disks. In: Proc. of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA2000), pp. 223–232 (2000)

  15. 15.

    Jansen, K., Solis-Oba, R.: An asymptotic fully polynomial time approximation scheme for bin covering. Theor. Comput. Sci. 306(1–3), 543–551 (2003)

    MATH  Article  MathSciNet  Google Scholar 

  16. 16.

    Krumke, S.O., de Paepe, W., Rambau, J., Stougie, L.: Online bin coloring. In: Proc. of the 9th Annual European Symposium on Algorithms (ESA2001), pp. 74–85 (2001)

  17. 17.

    Shachnai, H., Tamir, T.: On two class-constrained versions of the multiple knapsack problem. Algorithmica 29(3), 442–467 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  18. 18.

    Shachnai, H., Tamir, T.: Polynomial time approximation schemes for class-constrained packing problems. J. Sched. 4(6), 313–338 (2001)

    MATH  Article  MathSciNet  Google Scholar 

  19. 19.

    Shachnai, H., Tamir, T.: Tight bounds for online class-constrained packing. Theor. Comput. Sci. 321(1), 103–123 (2004)

    MATH  Article  MathSciNet  Google Scholar 

  20. 20.

    Xavier, E.C., Miyazawa, F.K.: The class constrained bin packing problem with applications to video-on-demand. In: Proc. of the 12th Annual International Conference on Computing and Combinatorics (COCOON 2006), pp. 439–448 (2006)

  21. 21.

    Yao, A.C.C.: Probabilistic computations: towards a unified measure of complexity. In: Proc. of the 18th Symposium on Foundations of Computer Science (FOCS’77), pp. 222–227 (1977)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leah Epstein.

Additional information

This research has been partially supported by the Hungarian National Foundation for Scientific Research, Grant F048587.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Epstein, L., Imreh, C. & Levin, A. Class Constrained Bin Covering. Theory Comput Syst 46, 246–260 (2010). https://doi.org/10.1007/s00224-008-9129-7

Download citation

Keywords

  • Bin covering
  • Online algorithms