Skip to main content
Log in

Classification of Computably Approximable Real Numbers

  • Published:
Theory of Computing Systems Aims and scope Submit manuscript

Abstract

A real number is called computably approximable if it is the limit of a computable sequence of rational numbers. Therefore the complexity of these real numbers can be classified by considering the convergence speed of computable sequences. In this paper we introduce a natural way to measure the convergence speed by counting the number of jumps of given sizes that appear after certain stages. Bounding the number of such kind of big jumps by different bounding functions, we introduce various classes of real numbers with different levels of approximation quality. We discuss further their mathematical properties as well as computability theoretical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aberth, O.: Computable Calculus. Academic, San Diego (2001)

    MATH  Google Scholar 

  2. Ambos-Spies, K., Weihrauch, K., Zheng, X.: Weakly computable real numbers. J. Complex. 16(4), 676–690 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bridges, D.S.: Constructive mathematics: a foundation for computable analysis. Theor. Comput. Sci. 219(1–2), 95–109 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Calude, C.S., Hertling, P.H., Khoussainov, B., Wang, Y.: Recursively enumerable reals and Chaitin Ω numbers. Theor. Comput. Sci. 255, 125–149 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Downey, R.G.: Some computability-theoretic aspects of reals and randomness. In: The Notre Dame Lectures. Lect. Notes Log., vol. 18, pp. 97–147. Assoc. Symb. Logic, Urbana (2005)

    Google Scholar 

  6. Ershov, Y.L.: A certain hierarchy of sets. i, ii, iii. Algebra i Logika 7(1), 47–73 (1968); 7(4), 15–47 (1968); 9, 34–51 (1970) (Russian)

    MATH  MathSciNet  Google Scholar 

  7. Friedberg, R.M.: Two recursively enumerable sets of incomparable degrees of unsolvability (solution of Post’s problem, 1944). Proc. Nat. Acad. Sci. U.S.A. 43, 236–238 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  8. Grzegorczyk, A.: Some classes of recursive functions. Rozprawy Mat. 4, 46 (1953)

    MathSciNet  Google Scholar 

  9. Ko, K.-I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)

    MATH  Google Scholar 

  10. Lempp, S., Lerman, M.: A general framework for priority arguments. Bull. Symb. Log. 1(2), 189–201 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  11. Muchnik, A.A.: On the unsolvability of the problem of reducibility in the theory of algorithms. Dokl. Akad. Nauk SSSR (N.S.) 108, 194–197 (1956)

    MATH  MathSciNet  Google Scholar 

  12. Myhill, J.: Criteria of constructibility for real numbers. J. Symb. Log. 18(1), 7–10 (1953)

    Article  MATH  MathSciNet  Google Scholar 

  13. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Mathematical Logic. Springer, Berlin (1989)

    MATH  Google Scholar 

  14. Rettinger, R., Zheng, X., Gengler, R., von Braunmühl, B.: Weakly computable real numbers and total computable real functions. In: Proceedings of COCOON 2001, Guilin, China, August 20–23, 2001. Lecture Notes in Comput. Sci., vol. 2108, pp. 586–595. Springer, Berlin (2001)

    Google Scholar 

  15. Rice, H.G.: Recursive real numbers. Proc. Am. Math. Soc. 5, 784–791 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  16. Robinson, R.M.: Review of “Peter, R., Rekursive Funktionen”. J. Symb. Log. 16, 280–282 (1951)

    Article  Google Scholar 

  17. Soare, R.I.: Cohesive sets and recursively enumerable Dedekind cuts. Pac. J. Math. 31, 215–231 (1969)

    MATH  MathSciNet  Google Scholar 

  18. Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Perspectives in Mathematical Logic. Springer, Berlin (1987)

    Google Scholar 

  19. Specker, E.: Nicht konstruktiv beweisbare Sätze der Analysis. J. Symb. Log. 14(3), 145–158 (1949)

    Article  MATH  MathSciNet  Google Scholar 

  20. Turing, A.M.: On computable numbers, with an application to the “Entscheidungsproblem”. Proc. Lond. Math. Soc. 42(2), 230–265 (1936)

    MATH  Google Scholar 

  21. Weihrauch, K.: Computable Analysis, An Introduction. Springer, Berlin (2000)

    MATH  Google Scholar 

  22. Zheng, X., Rettinger, R.: Weak computability and representation of reals. Math. Log. Q. 50(4/5), 431–442 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  23. Zheng, X., Rettinger, R., Gengler, R.: Closure properties of real number classes under CBV functions. Theory Comput. Syst. 38, 701–729 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  24. Zheng, X., Lu, D., Bao, K.: Divergence bounded computable real numbers. Theory Comput. Sci. 351, 27–38 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xizhong Zheng.

Additional information

This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, X. Classification of Computably Approximable Real Numbers. Theory Comput Syst 43, 603–624 (2008). https://doi.org/10.1007/s00224-007-9026-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00224-007-9026-5

Keywords

Navigation