Skip to main content

Advertisement

Log in

Gap Junctional Intercellular Communication in Bone: A Cellular Basis for the Mechanostat Set Point

  • Editorial
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Frost HM (1987) Bone “mass” and the “mechanostat”: a proposal. Anat Rec 219(1): 1–9

    Article  CAS  PubMed  Google Scholar 

  2. Frost HM (1996) Perspectives: a proposed general model of the “mechanostat.” Anat Rec 244: 139–147

    Article  CAS  PubMed  Google Scholar 

  3. Turner CH, Forwood MR (1995) What role does the osteocyte network play in bone adaptation? [editorial]. Bone 16(3):283–285

    Article  CAS  PubMed  Google Scholar 

  4. Grimston SK (1993) An application of mechanostat theory to research design: a theoretical model. Med Sci Sports Exerc 25:1293–1297

    CAS  PubMed  Google Scholar 

  5. Parfitt AM (1994) The two faces of growth: benefits and risks to bone integrity. Osteoporosis Int 4(6):382–398

    Article  CAS  Google Scholar 

  6. Ma Y, Jee WSS, Chen Y, Gasser J, Ke HZ, Li XJ, Kimmel DB (1995) Partial maintenance of extra cancellous bone mass by antiresorptive agents after discontinuation of human parathyroid hormone (1–38) in right hindlimb immobilized rats. J Bone Miner Res 10(11):1726–1734

    Article  CAS  PubMed  Google Scholar 

  7. Burger EH, Klein-Nulend J, van der Plas A, Nijweide PJ (1995) Function of osteocytes in bone—their role in mechanotransduction. J Nutr 125(suppl)S:2020S–2023S

    CAS  PubMed  Google Scholar 

  8. Zhang JT, Nicholson BJ (1989) Sequence and tissue distribution of a second protein of hepatic gap junctions, Cx26, as deduced from its cDNA. J Cell Biol 109(6 Pt 2):3391–3401

    Article  CAS  PubMed  Google Scholar 

  9. Paul DL (1986) Molecular cloning of cDNA for rat liver gap junction protein. J Cell Biol 103(1):123–134

    Article  CAS  PubMed  Google Scholar 

  10. Beyer EC, Paul DL, Goodenough DA (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105(6 Pt 1):2621–2629

    Article  CAS  PubMed  Google Scholar 

  11. Beyer EC, Kistler J, Paul DL, Goodenough DA (1989) Anti-sera directed against connexin43 peptides react with a 43-kD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 108(2):595–605

    Article  CAS  PubMed  Google Scholar 

  12. Doty SB (1981) Morphological evidence of gap junctions between bone cells. Calcif Tissue Int 33(5):509–512

    Article  CAS  PubMed  Google Scholar 

  13. Jones SJ, Gray C, Sakamaki H, Arora M, Boyde A, Gourdie R, Green C (1993) The incidence and size of gap junctions between the bone cells in rat calvaria. Anat Embryol 187:343–352

    Article  CAS  PubMed  Google Scholar 

  14. Jeansonne BG, Feagin FF, McMinn RW, Shoemaker RL, Rehm WS (1979) Cell-to-cell communication of osteoblasts. J Dent Res 58(4):1415–1423

    Article  CAS  PubMed  Google Scholar 

  15. Schirrmacher K, Schmitz I, Winterhager E, Traub 0, Brummer F, Jones D, Bingmann D (1992) Characterization of gap junctions between osteoblast-like cells in culture. Calcif Tissue Int 51(4):285–290

    Article  CAS  PubMed  Google Scholar 

  16. Schirrmacher K, Brummer F, Dusing R, Bingmann D (1993) Dye and electric coupling between osteoblast-like cells in culture. Calcif Tissue Int 53(1):53–60

    Article  CAS  PubMed  Google Scholar 

  17. Schiller PC, Mehta PP, Roos BA, Howard GA (1992) Hormonal regulation of intercellular communication: parathyroid hormone increases connexin 43 gene expression and gap-junctional communication in osteoblastic cells. Mol Endocrinol 6:1433–1440

    CAS  PubMed  Google Scholar 

  18. Civitelli R, Beyer EC, Warlow PM, Robertson AJ, Geist ST, Steinberg TH (1993) Connexin43 mediates direct intercellular communication in human osteoblastic cell networks. J Clin Invest 91:1888–1896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Yamaguchi DT, Ma D, Lee A, Huang J, Gruber HE (1994) Isolation and characterization of gap junctions in the osteoblastic MC3T3-El cell line. J Bone Miner Res 9(6):791–803

    Article  CAS  PubMed  Google Scholar 

  20. Chiba H, Sawada N, Oyarnada M, Kojima T, Nomura S, Ishii S, Mori M (1993) Relationship between the expression of the gap junction protein and osteoblast phenotype in a human osteoblastic cell line during cell proliferation. Cell Struct Funct 18(6):419–426

    Article  CAS  PubMed  Google Scholar 

  21. Donahue HJ, McLeod KJ, Rubin CT, Andersen J, Grine EA, Hertzberg EL, Brink PR (1995) Cell-to-cell communication in osteoblastic networks: cell line-dependent hormonal regulation of gap junction function. J Bone Miner Res 10(6):881–889

    Article  CAS  PubMed  Google Scholar 

  22. Steinberg TH, Civitelli R, Geist ST, Robertson AJ, Hick E, Veenstra RD, Wang HZ, Warlow PM, Westphale EM, Laing JG, Beyer EC (1994) Connexin43 and connexin45 form gap junctions with different molecular permeabilities in osteoblastic cells. EMBO J 13:744–750

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Gray C, Boyde A, Jones SJ (1996) Topographically induced bone formation in vitro: implications for bone implants and bone grafts. Bone 18(2): 115–123

    Article  CAS  PubMed  Google Scholar 

  24. Mason DJ, Hillam RA, Skerry TM (1996) Constitutive in vivo mRNA expression by osteocytes of B-actin, osteocalcin, connexin-43, IGF-I, c-fos and c-jun, but not TNF-a nor tartrate-resistant acid phosphatase. J Bone Miner Res 11(3):350–357

    Article  CAS  PubMed  Google Scholar 

  25. Cowin SC, Weinbaum S, Zeng Y (1995) A case for bone canaliculi as the anatomical site of strain-generated potentials. J Biomech 28(11):1281–1297

    Article  CAS  PubMed  Google Scholar 

  26. Duncan RL, Turner CH (1995) Mechanotransduction and the functional response of bone to mechanical strain [review]. Calcif Tissue Int 57(5):344–358

    Article  CAS  PubMed  Google Scholar 

  27. Lanyon LE (1993) Osteocytes, strain detection, bone modeling and remodeling. Calcif Tissue Int 53(suppl 1):S102–S107

    Article  PubMed  Google Scholar 

  28. Munari-Silem Y, Lebrethon MC, Morand I, Rousset B, Saez JM (1995) Gap junction-mediated cell-to-cell communication in bovine and human adrenal cells. A process whereby cells increase their responsiveness to physiological corticotropin concentrations. J Clin Invest 95(4):1429–1439

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Stauffer PL, Zhao H, Luby-Phelps K, Moss RL, Star RA, Muallem S (1993) Gap junction communication modulates [Ca2+]i oscillations and enzyme secretion in pancreatic acini. J Biol Chem 268(26): 19769–19775

    CAS  PubMed  Google Scholar 

  30. Fedotov VP, Gudoshnikov VI, Baranova IN (1993) The possible participation of gap junctions in the realization of the effects of stimulators of secretory processes in the hypophysis. Biulleten Eksperimentalnoi Biologii i Meditsiny 116(12):619–621

    CAS  Google Scholar 

  31. Christ GJ, Brink PR, Zhao W, Moss J, Gondre CM, Roy C, Spray DC (1993) Gap junctions modulate tissue contractility and alpha I adrenergic agonist efficacy in isolated rat aorta. J Pharmacal Exp Ther 266(2):1054–1065

    CAS  Google Scholar 

  32. Bastiaanse EM, Jongsma HJ, van der Laarse A, Takens-Kwak BR (1993) Heptanol-induced decrease in cardiac gap junctional conductance is mediated by a decrease in the fluidity of membranous cholesterol-rich domains. J Membr Biol 136(2): 135–145

    Article  CAS  PubMed  Google Scholar 

  33. Vander Molen MA, Rubin CT, McLeod KJ, McCauley LK, Donahue HJ (1996) Gap junctional intercellular communication contributes to hormonal responsiveness in osteoblastic networks. J Biol Chem 271(21):12165–12171

    Article  CAS  PubMed  Google Scholar 

  34. McLeod KJ (1992) Microelectrode measurements of low frequency electric field effects in cells and tissues (Review). Bioelectromagnetics (Suppl 1):161–178

    Google Scholar 

  35. Fukada E, Yasuda I (1957) On the piezoelectric effect of bone. J Phys Soc 12:1158–1162

    Article  Google Scholar 

  36. Marino AA, Becker RO, Soderholm SC (1971) Origin of the piezoelectric effect in bone. Calcif Tissue Res 8(2):177–180

    Article  CAS  PubMed  Google Scholar 

  37. Hastings GW, Mahmud FA (1988) Electrical effects in bone. J Biomed Eng 10(6):515–521

    Article  CAS  PubMed  Google Scholar 

  38. Rubin CT, McLeod KJ, Lanyon LE (1989) Prevention of osteoporosis by pulsed electromagnetic fields. J Bone Joint Surg (American) 71(3):411–417

    CAS  Google Scholar 

  39. McLeod KJ, Donahue HJ, Levin PE, Fontaine MA, Rubin CT (1993) Electric fields modulate bone cell function in a density-dependent manner. J Bone Miner Res 8(8):977–984

    Article  CAS  PubMed  Google Scholar 

  40. Weaver JC, Astumian RD (1990) The response of living cells to very weak electric fields: the thermal noise limit [published erratum appears in Science 1990 Mar 2;247(4946): 1019]. Science 247(4941):459–462

    Article  CAS  PubMed  Google Scholar 

  41. Cooper MS (1984) Gap junctions increase the sensitivity of tissue cells to exogenous electric fields. J Theoret Biol 111(1): 123–130

    Article  CAS  Google Scholar 

  42. Pilla AA, Nasser PR, Kaufman JJ (1992) Cell-cell communication significantly decreases thermal noice limits for electromagnetic bioeffects. Proc. 14th Ann. Intr. Conf. IEEE Engineering Med Biol Soc (part 1) 7:300

    Google Scholar 

  43. Vander Molen MA, McLeod KJ, Donahue HJ, Rubin CT (1996) The influence of intercellular communication in defining osteoblast activity to biophysical stimuli. Trans Orthop Res Soc 2(2):338

    Google Scholar 

  44. Donahue HJ, Fryer MJ, Eriksen EF, Heath HD (1988) Differential effects of parathyroid hormone and its analogues on cytosolic calcium ion and cAMP levels in cultured rat osteoblast-like cells. J Biol Chem 263(27): 13522–13527

    CAS  PubMed  Google Scholar 

  45. Chiba H, Sawada N, Oyamada M, Kojima T, Iba K, Ishii S, Mori M (1994) Hormonal regulation of connexin 43 expression and gap junctional communication in human osteoblastic cells. Cell Struct Funct 19(3):173–177

    Article  CAS  PubMed  Google Scholar 

  46. Rudkin GH, Yamaguchi DT, Ishida K, Peterson WJ, Bahadosingh F, Thye D, Miller TA (1996) Transforming growth factor-beta, osteogenin, and bone morphogenetic protein-2 inhibit intercellular communication and alter cell proliferation in MC3T3-E1 cells. J of Cell Physiol 168(2):433–441

    Article  CAS  Google Scholar 

  47. Cooper MS, Miller JP, Fraser SE (1989) Electrophoretic repatterning of charged cytoplasmic molecules within tissues coupled by gap junctions by externally applied electric fields. Dev Biol 132(1):179–188

    Article  CAS  PubMed  Google Scholar 

  48. Donahue HJ, Vander Molen MA, Yellowley CE, Li Z (1997) Gap junctional intercellular communication in bone. Cells Materials 6: 1–10

    Google Scholar 

  49. Xia SL, Ferrier J (1992) Propagation of a calcium pulse between osteoblastic cells. Biochem Biophys Res Commun 186: 1212–1219

    Article  CAS  PubMed  Google Scholar 

  50. Turner CH, Takano Y, Owan I (1995) Aging changes mechanical loading thresholds for bone formation in rats. J Bone Miner Res 10(10):1544–1549

    Article  CAS  PubMed  Google Scholar 

  51. Rubin CT, Bain SD, McLeod KJ (1992) Suppression of the osteogenic response in the aging skeleton. Calcif Tissue Int 50:306–313

    Article  CAS  PubMed  Google Scholar 

  52. Donahue HJ, Brink PR, McLeod KJ, Hertzberg EL, Rubin CT (1995) Age-induced attenuation of hormonally regulated intercellular communication in bone cell networks. Prog Cell Res 4:349–352

    Article  CAS  Google Scholar 

  53. Carvalho RS, Scott JE, Suga DM, Yen EH (1994) Stimulation of signal transduction pathways in osteoblasts by mechanical strain potentiated by parathyroid hormone. J Bone Miner Res 9(7):999–1011

    Article  CAS  PubMed  Google Scholar 

  54. Ryaby JT, Magee FP, Haupt DL, Kinney JH (1996) Reversal of osteopenia in ovariectomized rats with combined magnetic fields as assessed by x-ray tomographic microscopy. J Bone Miner Res 11(S1):S23l

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Donahue, H.J. Gap Junctional Intercellular Communication in Bone: A Cellular Basis for the Mechanostat Set Point. Calcif Tissue Int 62, 85–88 (1998). https://doi.org/10.1007/s002239900398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002239900398

Navigation