Skip to main content

Advertisement

Log in

In Vitro and In Vivo effects of ipriflavone on bone formation and bone biomechanics

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Ipriflavone (IP) positively affects bone density in postmenopausal osteoporosis, primarily by inhibiting bone resorption. Using in vitro models of human osteoblast differentiation, we have observed that IP and some of its metabolites stimulate the expression of bone sialoprotein, decorin, and type I collagen, and facilitate the deposition of mineralized matrix. This suggests that IP may stimulate bone formation in addition to its antiresorptive activity. To assess whether these effects translate into an improved bone “quality” in vivo, we measured biomechanical properties, mineral composition, and crystallinity of femurs of 12-week-old, male, Sprague-Dawley rats treated with IP for 1 month. IP significantly decreased vibration damping, an index of strain energy loss. Because vibration damping increases as bone porosity increases, the results indicate that IP-treated bones acquired a higher capacity to withstand dynamic stress. In fact, 1.5-fold higher energy was required to fracture femurs of IP-treated rats after a single supramaximal impact. IP also increased BMD, assessed by both volume displacement and ash analysis, whereas the relative contents of Ca, P, and Mg in the ashes were not affected. Thus, no gross abnormalities in mineral composition of bone occurred after IP administration. As a measure of bone crystallinity, X-ray diffraction analysis was performed. The broadening parameter β1/2 for the (310) and (002) reflections was not significantly different between IP-treated and control animals. Similarly, there were no differences in serum levels of Ca, Mg, alkaline phosphatase, and type I collagen telopeptides between treated and control animals at the end of the study. Therefore, 1-month treatment with IP increased bone density and improved the biomechanical properties of adult male rat bones without altering mineral composition or bone crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Notoya K, Yoshida K, Taketomi S, Yamazaki I, Kumegawa M (1992) Inhibitory effect of ipriflavone on pit formation in mouse unfractioned bone cells. Calcif Tissue Int 51:S3-S6

    Article  PubMed  CAS  Google Scholar 

  2. Morita I, Sakagushi K, Kurachi T, Murota S (1992) Ipriflavone inhibits murine osteoclast formation in vitro. Calcif Tissue Int 51:S7-S10

    Article  PubMed  CAS  Google Scholar 

  3. Bonucci E, Silvestrini G, Ballanti P, Masi L, Franchi A, Bufalino L, Brandi ML (1992) Cytological and ultrastructural investigation on osteoblastic and preosteoclastic cells grown in vitro in the presence of ipriflavone: preliminary results. Bone Miner 19:S15-S25

    Article  PubMed  CAS  Google Scholar 

  4. Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P, Bufalino L (1992) Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int 50:314–319

    Article  PubMed  CAS  Google Scholar 

  5. Azria M, Behar C, Cooper S (1993) Lack of effect of ipriflavone on osteoclast motility and bone resorption in in vitro and ex vivo studies. Calcif Tissue Int 52:16–20

    Article  PubMed  CAS  Google Scholar 

  6. Sziklai I, Ribari O (1985) The effect of flavone treatment on human otosclerotic ossicle organ cultures. Arch Otorhinolaryngol 242:67–70

    Article  PubMed  CAS  Google Scholar 

  7. Ribari O, Sziklai I (1987) Effect of flavonoid on PGE2induced alterations in percentage collagen synthesis in ossicle organ cultures. Acta Otolaryngol 103:657–660

    PubMed  CAS  Google Scholar 

  8. Benvenuti S, Tanini A, Frediani U, Bianchi S, Masi L, Casano R, Bufalino L, Serio M, Brandi ML (1991) Effects of ipriflavone and its metabolites on a clonal osteoblastic cell line. J Bone Miner Res 6:987–996

    PubMed  CAS  Google Scholar 

  9. Notoya K, Tsukuda R, Yoshida K, Taketomi S (1992) Stimulatory effect of ipriflavone on formation of bone-like tissue in rat bone marrow stromal cell culture. Calcif Tissue Int 51:S16-S20

    Article  PubMed  CAS  Google Scholar 

  10. Notoya K, Yoshida K, Tsukuda R, Taketomi S (1994) Effect of ipriflavone on expression of markers characteristic of the osteoblast phenotype in rat bone marrow stromal cell culture. J Bone Miner Res 9:395–400

    PubMed  CAS  Google Scholar 

  11. Kakai Y, Kawase T, Nakano T, Mikuni-Takagaki Y, Saito S (1992) Effect of ipriflavone and estrogen on the differentiation and proliferation of osteogenic cells. Calcif Tissue Int 51:S11-S15

    Article  PubMed  CAS  Google Scholar 

  12. Cheng S, Zhang S, Nelson TL, Warlow PM, Civitelli R (1994) Stimulation of human osteoblast differentiation and function by ipriflavone and its metabolites. Calcif Tissue Int 55:356–362

    Article  PubMed  CAS  Google Scholar 

  13. Cheng S, Yang JW, Rifas L, Zhang S, Avioli LV (1994) Differentiation of human bone marrow osteogenic stromal cells in vitro: induction of the osteoblast phenotype by dexamethasone. Endocrinology 134:277–286

    Article  PubMed  CAS  Google Scholar 

  14. Agnusdei D, Bufalino L, Gennari C (1993) Effects of ipriflavone on bone mass and bone turnover in postmenopausal women with low bone mass. In: Christiansen C, Riis BJ (eds) Proc 1993: IV Int Symp on Osteoporosis. Aalborg, Denmark: Handelstrykkeriet, pp 467–470

    Google Scholar 

  15. Passeri M, Biondi M, Costi D, Dall’Aglio E, Pedrazzoni M, Bufalino L, Castiglione GN, Abate G (1995) Effects of 2-year therapy with ipriflavone in elderly women with established osteoporosis. It J Miner Electrolyte Metab 9:137–144

    CAS  Google Scholar 

  16. Gambacciani M, Spinetti A, Cappagli B, Taponeco F, Felipetto R, Parrini D, Cappelli N, Fioretti P (1993) Effects of ipriflavone administration on bone mass and metabolism in ovariectomized women. J Endocrinol Invest 16:333–337

    PubMed  CAS  Google Scholar 

  17. Einhorn TA (1992) Bone strength: the bottom line (editorial). Calcif Tissue Int 51:333–339

    Article  PubMed  CAS  Google Scholar 

  18. Yamazaki I, Shino A, Shimizu Y, Tsukuda R, Shirakawa Y, Kinoshita M (1986) Effect of ipriflavone on glucocorticoidinduced osteoporosis in rats. Life Sci 38:951–958

    Article  PubMed  CAS  Google Scholar 

  19. Civitelli R, Abbasi-Jahromi SA, Halstead LR, Dimarogonas AD (1995) Ipriflavone improves bone density and biomechanical properties of adult male rat bones. Calcif Tissue Int 56:215–219

    Article  PubMed  CAS  Google Scholar 

  20. Nikiforidis G, Bezerianos A, Dimarogonas AD, Sutherland C (1990) Monitoring of fracture healing by lateral and axial vibration analysis. J Biomech 23:323–330

    Article  PubMed  CAS  Google Scholar 

  21. Dimarogonas AD, Abbasi-Jahromi SA, Avioli LV (1993) Material damping for monitoring of density and strength of bones. Calcif Tissue Int 52:244–247

    Article  PubMed  CAS  Google Scholar 

  22. John V (1992) Introduction to engineering materials. Industrial Press Inc, New York, NY

    Google Scholar 

  23. Burnell JM, Teubner EJ, Miller AG (1980) Normal maturational changes in bone matrix, mineral, and crystal size in the rat. Calcif Tissue Int 31:13–19

    Article  PubMed  CAS  Google Scholar 

  24. Posner AS (1969) Crystal chemistry of bone mineral. Physiol Rev 49:760–792

    PubMed  CAS  Google Scholar 

  25. Termine JD, Eanes ED (1972) Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 10:171–197

    Article  PubMed  CAS  Google Scholar 

  26. Eanes ED, Reddi AH (1979) The effect of fluoride on bone mineral apatite. Metab Bone Dis Rel Res 2:3–10

    Article  CAS  Google Scholar 

  27. Grynpas MD (1995) Fluoride effects on bone crystals. J Bone Miner Res 5:S169-S175

    Article  Google Scholar 

  28. Shinoda H, Adamek G, Felix R, Fleisch H, Schenk R, Hagan P (1983) Structure-activity relationship of various bisphosphonates. Calcif Tissue Int 35:87–99

    Article  PubMed  CAS  Google Scholar 

  29. Fleisch H, Russell RGG, Bisaz S, Muhlbauer RC, Williams DA (1970) The inhibitory effect of phosphonates on the formation of calcium phosphate crystals in vitro and on aortic and kidney calcification in vivo. Eur J Clin Invest 1:12–18

    Article  PubMed  CAS  Google Scholar 

  30. Fleisch H (1991) Bisphosphonates: pharmacology and use in the treatment of tumour-induced hypercalcaemic and metastatic bone diseases. Drugs 42:919–944

    Article  PubMed  CAS  Google Scholar 

  31. Ghezzo C, Cadel S, Borelli G, Maiorino M, Civitelli R, Bufalino L, Bongrani S (1996) Ipriflavone does not alter bone apatite crystal structure in adult male rats. Calcif Tissue Int 59:496–499

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Civitelli, R. In Vitro and In Vivo effects of ipriflavone on bone formation and bone biomechanics. Calcif Tissue Int 61 (Suppl 1), S12–S14 (1997). https://doi.org/10.1007/s002239900378

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002239900378

Key words

Navigation