Skip to main content

Advertisement

Log in

Natural and synthetic isoflavones in the prevention and treatment of chronic diseases

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The evidence that natural isoflavones protect against several chronic diseases is both observational and experimental. In humans, epidemiologic findings clearly show a higher incidence of some common types of cancer (i.e., breast, prostate, and colon) and of coronary heart diseases in Western populations exposed to limited amounts of soybean isoflavones (i.e., genistein, daidzein) in the diet. Further evidence for cancer and cardiac protection and antiatherogenic effects resulting from soybean isoflavones administration has been noted in various experimental animal models. Isoflavones may also prevent postmenopausal bone loss and osteoporosis. In fact, genistein has been reported to be as active as estrogens in maintaining bone mass in ovariectornized rats. Moreover, the synthetic isoflavone derivative ipriflavone is able to reduce bone loss in various types of animal models of experimental osteoporosis providing a rationale on its use in the prevention and treatment of postmenopausal and senile osteoporosis in humans. The mechanism through which isoflavones may exert the abovementioned effects seems to depend, at least in part, on their mixed estrogen agonist-antagonist properties. An alternative hypothetical mechanism could derive from other biochemical actions of isoflavones such as inhibition of enzymatic activity, in particular protein kinases, or activation of an “orphan” receptor distinct from the estrogen type I receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bradbury RB, White DE (1954) Estrogens and related substances in plants. In: Harris RS, Marrian GF, KV Thimann (eds) Vitamins and hormones. Academic Press, New York, pp 207–233

    Google Scholar 

  2. Farnsworth NR, Bingel AS, Cordell AS, Crane FA, Fong HHS (1975) Potential value of plants as sources of new antifertility agents. J Pharm Sci 64:717–754

    Article  PubMed  CAS  Google Scholar 

  3. Kondo H, Nakajima S, Yamamoto N, Okura A, Satoh F, Suda H, Okanishi M, Tanaka N (1990) BE-14384 substances, new specific estrogen-receptor binding inhibitors. Production, isolation, structure determination and biological properties. J Antibio (Tokyo) 43:1533–1542

    CAS  Google Scholar 

  4. Martin PM, Horowitz KB, Ryan DS, McGuire WL (1978) Phytoestrogen interaction with estrogen receptors in human breast cancer cells. Endocrinology 103:1860–1867

    Article  PubMed  CAS  Google Scholar 

  5. Setchell KDR, Bordello SP, Hulme P, Kirk DN, Axelson M (1984) Non-steroidal estrogens of dietary origin: possible role in hormone-dependent disease. Am J Clin Nutr 40:569–578

    PubMed  CAS  Google Scholar 

  6. Clark JH, Hardin JM, Upchurch S, Eriksson H (1978) Heterogeneity of estrogen binding sites in the cytosol of rat uterus. J Biol Chem 253:7630–7634

    PubMed  CAS  Google Scholar 

  7. Markarevich BM, Roberts RR, Finney RW, Clark JH (1983) Preliminary characterization of an endogenous inhibitor of [3H]-estradiol binding in rat uterine nuclei. J Biol Chem 258: 11663–11671

    Google Scholar 

  8. Bickoff EM, Livingston AL, Booth AN (1964) Tricin from alfalfa-isolation and physiological activity. J Pharm Sci 53: 1411–1412

    Article  PubMed  CAS  Google Scholar 

  9. Shutt DA, Cox RI (1972) Steroid and phytoestrogen binding to sheep uterine receptors in vitro. J Endocrinol 52:299–310

    Article  PubMed  CAS  Google Scholar 

  10. Cheng E, Yoder L, Story CD, Burroughs W (1954) Estrogenic activity of some isoflavone derivates. Science 120:575–577

    Article  PubMed  CAS  Google Scholar 

  11. Bickoff EM, Livingston AL, Hendrickson AP, Booth AN (1962) Relative potencies of several estrogen-like compounds found in forrages. Agric Food Chem 10:410–412

    Article  Google Scholar 

  12. Bickoff EM, Booth AN, Lyman RL, Livingston AL, Thompson CR, DeEDS F (1957) Coumestrol, a new estrogen isolated from forage crops. Science 126:969–970

    Article  PubMed  CAS  Google Scholar 

  13. Shemesh M, Lindner HR, Ayalon N (1972) Affinity of rabbit uterine oestradiol receptor for phyto-oestrogens and its use in a competitive protein-binding radioassay for plasma coumestrol. J Reprod Fert 29:1–9

    Article  CAS  Google Scholar 

  14. Adlercreutz H, van der Wildt J, Kilzel J, Attalla H, Wahala K, Makela T, Hase T, Fotsis T (1995) Lignan and isoflavonoid conjugates in human urine. J Steroid Biochem Mol Biol 52: 97–103

    Article  PubMed  CAS  Google Scholar 

  15. Setchell KDR, Gasselni SJ, Welsh MB, Johnston JO, Balistrieri WF, Kramer LW, Dresser BL, Tarr MJ (1987) Dietary estrogens—a probable cause of infertility and liver disease in captative cheetahs. Gastroenterology 93:225–233

    PubMed  CAS  Google Scholar 

  16. Barnes S, Grubbs C, Setchell KDR, Carlson J (1990) Soybeans inhibit mammary tumors in models of breast cancer. In: Pariza MW (ed) Mutagens and carcinogens in the Diet. Wiley-Liss, New York, pp 239–253

    Google Scholar 

  17. Adlercreutz M, Musey PI, Fotsis T, Bannwart C, Wahala K, Makela T, Brunow G, Hase T (1986) Identification of lignans and phyto-oestrogens in urine of chimpanzees. Clin Chim Acta 158:47–154

    Article  Google Scholar 

  18. Shino M (1985) Pharmacokinetic study of ipriflavone (TC80) by oral administration in healthy male volunteers. Jpn Pharmacol Ther 13:7223–7233

    Google Scholar 

  19. Terpstra AH, Wers CE, Ferris JT, Schouten JA, an derVeen EA (1984) Hypocholesterolemic effect of dietary soy protein versus casein in rhesus monkeys (Macaca mulatta). Am J Clin Med 39:1–7

    CAS  Google Scholar 

  20. Lovati MR, Manzoni C, Canavesi A, Sirtori M, Vaccarino V, Marchi M, Gaddi G, Sirtori CR (1987) Soybean protein diet increases low density lipoprotein receptor activity in mononuclear cells from hypercholesterolemic patients. J Clin Invest 80:1498–1502

    Article  PubMed  CAS  Google Scholar 

  21. Clarkson TB, Anthony MS, Hughes CL (1995) Estrogenic soybean isoflavones and chronic disease. Risks and benefits. Trend End Met 6:11–16

    Article  CAS  Google Scholar 

  22. Anderson JJB, Ambrose WW, Garner SC (1995) Biphasic effects of genistein on bone tissue in ovariectomized rat models. 3rd Intl Con on Phytoestrogens. Little Rock, Arkansas, USA; 3–6 December

    Google Scholar 

  23. Hann TJ (1978) Corticosteroid-induced osteopenia. Arch Intern Med 138:882–885

    Google Scholar 

  24. Yamazaki I, Shino A, Shimizu Y, Tsukuda R, Shirakawa Y, Kinoshita M (1986) Effect of ipriflavone on glucocorticoidinduced osteoporosis in rats. Life Sci 38:951–958

    Article  PubMed  CAS  Google Scholar 

  25. Shino A, Matsuo T, Tsuda M, Yamazaki I, Tsukuda R, Kitazaki T, Shiota K, Yoshida K (1986) Effect of ipriflavone on bone and mineral metabolism in the streptozotocin diabetic rats. J Bone Miner Metab 3:27–37

    Google Scholar 

  26. Suda A (1987) Effect of parathyroid hormone on parietal bones of rats, and effect of ipriflavone. J Bone Miner Metab 5:51–56

    Google Scholar 

  27. Takenaka M, Nakata M, Tomita M, Nakagawa T, Tsuboi S, Fujita T (1992) Effect of ipriflavone on the development of experimental osteopathy in rats induced by low calcium, low vitamin D diet. In: Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. Walter de Gruyter & Co., Berlin-New York, pp 607–609

    Google Scholar 

  28. Foldes I, Rapcsak M, Szoor A, Gyarmati J, Szilagy T (1988) The effect of ipriflavone treatment on osteoporosis induced by immobilization. Acta Morphol Hung 36:79–93

    PubMed  CAS  Google Scholar 

  29. Bonucci E, Ballanti P, Martelli A, Mereto E, Brambilla G, Bianco P, Bufalino L (1992) Ipriflavone inhibits osteoclast differentiation in parathyroid transplanted parietal bone of rats. Calcif Tissue Int 50:314–319

    Article  PubMed  CAS  Google Scholar 

  30. Ozawa H, Nakamura H, Irie K, Irie M (1992) Histochemical and fine structural study of bone of ipriflavone-treated rats. Calcif Tissue Int 51(suppl 1):s21-s26

    Article  PubMed  CAS  Google Scholar 

  31. Civitelli R, Abbasi-Jarhomi SH, Halstead LR, Dimaragonas A (1995) Ipriflavone improves bone density and biomechanical properties of adult male rat bones. Calcif Tissue Int 56:215–219

    Article  PubMed  CAS  Google Scholar 

  32. Fujita T, Mizuno K, Ono K, Inoue T, Shimazu A, Morii H, Ohata M, Takahashi H, Yoshida Y (1985) A dose-finding study on TC-80 (ipriflavone) in osteoporosis. Prog Med 5: 2959–2963

    Google Scholar 

  33. Gambacciani M, Spinetti A, Cappagli B, Taponeco F, Felipetto R, Parrini D, Cappelli N, Fioretti P (1993) Effects of ipriflavone administration on bone mass and metabolism in ovariectomized women. J Endocrinol Invest 16:333–337

    PubMed  CAS  Google Scholar 

  34. Gambacciani M, Spinetti A, Piaggesi L, Cappagli B, Taponeco F, Manetti P, Weiss C, Teti GC, La Commare P, Facchini V (1994) Ipriflavone prevents the bone mass reduction in premenopausal women treated with gonadotropin hormonereleasing hormone agonists. Bone Miner 26:19–26

    Article  PubMed  CAS  Google Scholar 

  35. Agnusdei D, Adami S, Cervetti R, Crepaldi G, Di Munno O, Fantasia L, Isaia GC, Letizia G, Ortolani S, Passeri M, Serni U, Vecchiet L, Gennari C (1992) Effects of ipriflavone on bone mass and calcium metabolism in postmenopausal osteoporosis. Bone Miner 19:S43-S48

    Article  PubMed  Google Scholar 

  36. Agnusdei D, Camporeale A, Zacchei F, Gennari C, Baroni MC, Costi D, Biondi M, Passeri M, Ciacca A, Sbrenna C, Falsettini E, Ventura A (1992) Effects of ipriflavone on bone mass and bone remodeling in patients with established postmenopausal osteoporosis. Curr Ther Res 51:82–91

    Google Scholar 

  37. Valente M, Bufalino L, Castiglione GN, D’Angelo R, Mancuso A, Galoppi P, Zichella L (1994) Effects of 1-year treatment with ipriflavone on bone in postmenopausal women with low bone mass. Calcif Tissue Int 54:377–380

    Article  PubMed  CAS  Google Scholar 

  38. Passeri M, Biondi M, Costi D, Dall’Aglio E, Pedrazzoni M, Bufalino L, Castiglione GN, Abate G (1995) Effects of 2-year therapy with ipriflavone in elderly women with established osteoporosis. Ital J Mineral Electrolyte Metab 9:137–144

    CAS  Google Scholar 

  39. Agnusdei D, Camporeale A, Gonnelli S, Gennari C, Baroni MC, Passeri M (1992) Short-term treatment of Paget’s disease of bone with ipriflavone. Bone Miner 19:S35-S42

    Article  PubMed  Google Scholar 

  40. Mazzuoli GF, Romagnoli E, Carnevale L, Scarda A, Scarnecchia M, Pacitti MT, Rosso R, Minisola S (1992) Effects of ipriflavone on bone remodeling in primary hyperparathyroidism. Bone Miner 19:S27-S33

    Article  PubMed  Google Scholar 

  41. Yamazaki I (1986) Effects of ipriflavone on the response of uterus and thyroid to estrogen. Life Sci 38:757–764

    Article  PubMed  CAS  Google Scholar 

  42. Melis GB, Paoletti AM, Cagnacci A, Bufalino L, Spinetti A, Gambacciani M, Fioretti P (1992) Lack of any estrogenic effect of ipriflavone in postmenopausal women. J Endocrinol Invest 15:755–761

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brandi, M.L. Natural and synthetic isoflavones in the prevention and treatment of chronic diseases. Calcif Tissue Int 61 (Suppl 1), S5–S8 (1997). https://doi.org/10.1007/s002239900376

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s002239900376

Key words

Navigation