Abstract.
Recently, an imaging technique using microcomputed tomography (micro-CT) has emerged as a method for nondestructively assessing the microarchitecture of unprocessed surgical bone biopsy specimens. Using micro-CT, two-dimensional (2D) axial images were obtained from undecalcified transiliac bone biopsies which were taken from 15 patients with various metabolic bone diseases. Total area, bone area, and bone perimeter were determined, from which the bone volume (BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N), and trabecular separation (Tb.Sp) were calculated semiautomatically and instantaneously. To evaluate the validity of this technique as a useful tool, the results were compared with those obtained from conventional histomorphometry. There were significant correlations between the two techniques for all parameters, with correlation coefficients ranging from 0.759 (Tb.N, P < 0.005) to 0.949 (BV/TV, P < 0.0001). Different resolutions seem to lead to major differences in perimeter values measured by the two methods. These factors may explain why the correlation coefficients of Tb.N and Tb.Th estimated from the perimeter and area is lower than that of BV/TV. Our results show that the micro-CT based on 2D images is a useful tool for imaging and nondestructively quantifying the microarchitecture of trabecular bone in unprocessed surgical bone specimens.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Uchiyama, T., Tanizawa, T., Muramatsu, H. et al. A Morphometric Comparison of Trabecular Structure of Human Ilium Between Microcomputed Tomography and Conventional Histomorphometry. Calcif Tissue Int 61, 493–498 (1997). https://doi.org/10.1007/s002239900373
Published:
Issue Date:
DOI: https://doi.org/10.1007/s002239900373