Skip to main content

Advertisement

Log in

Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The bone marrow microenvironment contains a diverse array of cell types under extensive regulatory control and provides for a novel and complex mechanism for bone regulation. Megakaryocytes (MKs) are one such cell type that potentially acts as a master regulator of the bone marrow microenvironment due to its effects on hematopoiesis, osteoblastogenesis, and osteoclastogenesis. While several of these processes are induced/inhibited through MK secreted factors, others are primarily regulated by direct cell–cell contact. Notably, the regulatory effects that MKs exert on these different cell populations has been found to change with aging and disease states. Overall, MKs are a critical component of the bone marrow that should be considered when examining regulation of the skeletal microenvironment. An increased understanding of the role of MKs in these physiological processes may provide insight into novel therapies that can be used to target specific pathways important in hematopoietic and skeletal disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

MK:

Megakaryocyte

OC:

Osteoclast

OB:

Osteoblast

HSC:

Hematopoietic stem cell

MSC:

Mesenchymal stem cell

BMM:

Bone marrow macrophage

TPO:

Thrombopoietin

References

  1. Noetzli LJ, French SL, Machlus KR (2019) New insights into the differentiation of megakaryocytes from hematopoietic progenitors. Arterioscler Thromb Vasc Biol 39(7):1288–1300

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Boulais PE, Frenette PS (2015) Making sense of hematopoietic stem cell niches. Blood 125(17):2621–2629

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Bruns I et al (2014) Megakaryocytes regulate hematopoietic stem cell quiescence through CXCL4 secretion. Nat Med 20(11):1315–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Ghosh J et al (2021) Cellular components of the hematopoietic niche and their regulation of hematopoietic stem cell function. Curr Opin Hematol 28(4):243–250

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Taichman RS (2005) Blood and bone: two tissues whose fates are intertwined to create the hematopoietic stem-cell niche. Blood 105(7):2631–2639

    Article  CAS  PubMed  Google Scholar 

  6. Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25

    CAS  PubMed  Google Scholar 

  7. Heazlewood SY et al (2013) Megakaryocytes co-localise with hemopoietic stem cells and release cytokines that up-regulate stem cell proliferation. Stem Cell Res 11(2):782–792

    Article  CAS  PubMed  Google Scholar 

  8. Grassinger J et al (2010) Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116(17):3185–3196

    Article  CAS  PubMed  Google Scholar 

  9. Dominici M et al (2009) Restoration and reversible expansion of the osteoblastic hematopoietic stem cell niche after marrow radioablation. Blood 114(11):2333–2343

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Olson TS et al (2013) Megakaryocytes promote murine osteoblastic HSC niche expansion and stem cell engraftment after radioablative conditioning. Blood 121(26):5238–5249

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Gruzdev GP, Chistopol’skii AS, Suvorova LA (1996) Radiosensitivity and postradiation kinetics of megakaryocyte release of the bone marrow (Analysis based on data of the Chernobyl AES accident sequelae). Radiats Biol Radioecol 36(2):250–263

    CAS  PubMed  Google Scholar 

  12. Monzen S et al (2009) Radiation sensitivities in the terminal stages of megakaryocytic maturation and platelet production. Radiat Res 172(3):314–320

    Article  CAS  PubMed  Google Scholar 

  13. Caselli A et al (2013) IGF-1-mediated osteoblastic niche expansion enhances long-term hematopoietic stem cell engraftment after murine bone marrow transplantation. Stem Cells 31(10):2193–2204

    Article  CAS  PubMed  Google Scholar 

  14. Wickenhauser C et al (1995) Detection and quantification of transforming growth factor beta (TGF-beta) and platelet-derived growth factor (PDGF) release by normal human megakaryocytes. Leukemia 9(2):310–315

    CAS  PubMed  Google Scholar 

  15. Demirtas TT et al (2016) Combined delivery of PDGF-BB and BMP-6 for enhanced osteoblastic differentiation. J Mater Sci Mater Med 27(1):12

    Article  PubMed  Google Scholar 

  16. Antoniades HN (1991) PDGF: a multifunctional growth factor. Baillieres Clin Endocrinol Metab 5(4):595–613

    Article  CAS  PubMed  Google Scholar 

  17. Lambert MP et al (2009) Platelet factor 4 regulates megakaryopoiesis through low-density lipoprotein receptor-related protein 1 (LRP1) on megakaryocytes. Blood 114(11):2290–2298

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jian J et al (2017) Platelet factor 4 is produced by subsets of myeloid cells in premetastatic lung and inhibits tumor metastasis. Oncotarget 8(17):27725–27739

    Article  PubMed  Google Scholar 

  19. Lambert MP et al (2015) Intramedullary megakaryocytes internalize released platelet factor 4 and store it in alpha granules. J Thromb Haemost 13(10):1888–1899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Aidoudi S et al (1996) In vivo effect of platelet factor 4 (PF4) and tetrapeptide AcSDKP on haemopoiesis of mice treated with 5-fluorouracil. Br J Haematol 94(3):443–448

    Article  CAS  PubMed  Google Scholar 

  21. Aidoudi S et al (1997) A 13–24 C-terminal peptide related to PF4 accelerates hematopoietic recovery of progenitor cells in vivo in mice treated with 5-fluorouracil. Int J Hematol 66(4):435–444

    Article  CAS  PubMed  Google Scholar 

  22. Zhao M et al (2014) Megakaryocytes maintain homeostatic quiescence and promote post-injury regeneration of hematopoietic stem cells. Nat Med 20(11):1321–1326

    Article  CAS  PubMed  Google Scholar 

  23. Wang X et al (2018) TGF-beta1 negatively regulates the number and function of hematopoietic stem cells. Stem Cell Reports 11(1):274–287

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Sims NA (2021) Influences of the IL-6 cytokine family on bone structure and function. Cytokine. 146:155655. https://doi.org/10.1016/j.cyto.2021.155655

  25. Harmer D, Falank C, Reagan MR (2019) Interleukin-6 interweaves the bone marrow microenvironment, bone loss, and multiple myeloma. Front Endocrinol (Lausanne). 9:788. https://doi.org/10.3389/fendo.2018.00788

  26. Kim H, Lee MK, Kim HR (2019) Difference in megakaryocyte expression of GATA-1, IL-6, and IL-8 associated with maintenance of platelet counts in patients with plasma cell neoplasm with dysmegakaryopoiesis. Exp Hematol. https://doi.org/10.1016/j.exphem.2019.02.005

    Article  PubMed Central  PubMed  Google Scholar 

  27. Tie R et al (2019) Interleukin-6 signaling regulates hematopoietic stem cell emergence. Exp Mol Med 51(10):1–12

    Article  CAS  PubMed  Google Scholar 

  28. van Pel M et al (2006) Serpina1 is a potent inhibitor of IL-8-induced hematopoietic stem cell mobilization. Proc Natl Acad Sci U S A 103(5):1469–1474

    Article  PubMed Central  PubMed  Google Scholar 

  29. Sierra F (2016) Moving geroscience into uncharted waters. J Gerontol A Biol Sci Med Sci 71(11):1385–1387

    Article  PubMed  Google Scholar 

  30. Poscablo DM et al (2021) Megakaryocyte progenitor cell function is enhanced upon aging despite the functional decline of aged hematopoietic stem cells. Stem Cell Reports 16(6):1598–1613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Rundberg Nilsson A et al (2016) Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS ONE 11(7):e0158369

    Article  PubMed Central  PubMed  Google Scholar 

  32. Ho YH et al (2019) Remodeling of bone marrow hematopoietic stem cell niches promotes myeloid cell expansion during premature or physiological aging. Cell Stem Cell. https://doi.org/10.1016/j.stem.2019.06.007

    Article  PubMed Central  PubMed  Google Scholar 

  33. Maryanovich M et al (2018) Adrenergic nerve degeneration in bone marrow drives aging of the hematopoietic stem cell niche. Nat Med 24(6):782–791

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Ho YH, Mendez-Ferrer S (2020) Microenvironmental contributions to hematopoietic stem cell aging. Haematologica 105(1):38–46

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Fishley B, Alexander WS (2004) Thrombopoietin signalling in physiology and disease. Growth Factors 22(3):151–155

    Article  CAS  PubMed  Google Scholar 

  36. de Graaf CA, Metcalf D (2011) Thrombopoietin and hematopoietic stem cells. Cell Cycle 10(10):1582–1589

    Article  PubMed Central  PubMed  Google Scholar 

  37. Ghanima W et al (2019) Thrombopoietin receptor agonists: ten years later. Haematologica 104(6):1112–1123

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Hitchcock IS et al (2021) The thrombopoietin receptor: revisiting the master regulator of platelet production. Platelets 32(6):770–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Li L et al (2022) Insights into regulatory factors in megakaryocyte development and function: basic mechanisms and potential targets. Front Biosci (Landmark Ed) 27(11):313

    Article  CAS  PubMed  Google Scholar 

  40. Yan XQ et al (1996) A model of myelofibrosis and osteosclerosis in mice induced by overexpressing thrombopoietin (mpl ligand): reversal of disease by bone marrow transplantation. Blood 88(2):402–409

    Article  CAS  PubMed  Google Scholar 

  41. Villeval JL et al (1997) High thrombopoietin production by hematopoietic cells induces a fatal myeloproliferative syndrome in mice. Blood 90(11):4369–4383

    Article  CAS  PubMed  Google Scholar 

  42. Kakumitsu H et al (2005) Transgenic mice overexpressing murine thrombopoietin develop myelofibrosis and osteosclerosis. Leuk Res 29(7):761–769

    Article  CAS  PubMed  Google Scholar 

  43. Olivos DJ 3rd et al (2017) Lnk deficiency leads to TPO-mediated osteoclastogenesis and increased bone mass phenotype. J Cell Biochem 118(8):2231–2240

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Bord S et al (2000) Megakaryocyte population in human bone marrow increases with estrogen treatment: a role in bone remodeling? Bone 27(3):397–401

    Article  CAS  PubMed  Google Scholar 

  45. Soves CP et al (2014) Megakaryocytes are mechanically responsive and influence osteoblast proliferation and differentiation. Bone 66:111–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Kacena MA et al (2004) Megakaryocyte-osteoblast interaction revealed in mice deficient in transcription factors GATA-1 and NF-E2. J Bone Miner Res 19(4):652–660

    Article  CAS  PubMed  Google Scholar 

  47. Meijome TE et al (2016) C-Mpl Is expressed on osteoblasts and osteoclasts and is important in regulating skeletal homeostasis. J Cell Biochem 117(4):959–969

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez MB et al (2018) Megakaryocyte and osteoblast interactions modulate bone mass and hematopoiesis. Stem Cells Dev 27(10):671–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Shivdasani RA et al (1995) Transcription factor NF-E2 is required for platelet formation independent of the actions of thrombopoietin/MGDF in megakaryocyte development. Cell 81(5):695–704

    Article  CAS  PubMed  Google Scholar 

  50. Vyas P et al (1999) Consequences of GATA-1 deficiency in megakaryocytes and platelets. Blood 93(9):2867–2875

    Article  CAS  PubMed  Google Scholar 

  51. Kacena MA et al (2013) The effects of GATA-1 and NF-E2 deficiency on bone biomechanical, biochemical, and mineral properties. J Cell Physiol 228(7):1594–1600

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Miao D et al (2004) Megakaryocyte-bone marrow stromal cell aggregates demonstrate increased colony formation and alkaline phosphatase expression in vitro. Tissue Eng 10(5–6):807–817

    Article  CAS  PubMed  Google Scholar 

  53. Ciovacco WA et al (2010) Immature and mature megakaryocytes enhance osteoblast proliferation and inhibit osteoclast formation. J Cell Biochem 109(4):774–781

    CAS  PubMed Central  PubMed  Google Scholar 

  54. Maupin KA et al (2019) Aging negatively impacts the ability of megakaryocytes to stimulate osteoblast proliferation and bone mass. Bone 127:452–459

    Article  PubMed Central  PubMed  Google Scholar 

  55. Lee YS et al (2020) Regulation of bone metabolism by megakaryocytes in a paracrine manner. Sci Rep 10(1):2277

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ciovacco WA et al (2009) The role of gap junctions in megakaryocyte-mediated osteoblast proliferation and differentiation. Bone 44(1):80–86

    Article  CAS  PubMed  Google Scholar 

  57. Lemieux JM, Horowitz MC, Kacena MA (2010) Involvement of integrins alpha(3)beta(1) and alpha(5)beta(1) and glycoprotein IIb in megakaryocyte-induced osteoblast proliferation. J Cell Biochem 109(5):927–932

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Tang Y et al (2020) Megakaryocytes promote bone formation through coupling osteogenesis with angiogenesis by secreting TGF-beta1. Theranostics 10(5):2229–2242

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Martelli F et al (2009) Removal of the spleen in mice alters the cytokine expression profile of the marrow micro-environment and increases bone formation. Ann N Y Acad Sci 1176:77–86

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Robey PG et al (1987) Osteoblasts synthesize and respond to transforming growth factor-type beta (TGF-beta) in vitro. J Cell Biol 105(1):457–463

    Article  CAS  PubMed  Google Scholar 

  61. Bonewald LF, Dallas SL (1994) Role of active and latent transforming growth factor beta in bone formation. J Cell Biochem 55(3):350–357

    Article  CAS  PubMed  Google Scholar 

  62. Jilka RL et al (1998) Osteoblast programmed cell death (apoptosis): modulation by growth factors and cytokines. J Bone Miner Res 13(5):793–802

    Article  CAS  PubMed  Google Scholar 

  63. Alliston T et al (2001) TGF-beta-induced repression of CBFA1 by Smad3 decreases cbfa1 and osteocalcin expression and inhibits osteoblast differentiation. EMBO J 20(9):2254–2272

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Kassem M, Kveiborg M, Eriksen EF (2000) Production and action of transforming growth factor-beta in human osteoblast cultures: dependence on cell differentiation and modulation by calcitriol. Eur J Clin Invest 30(5):429–437

    Article  CAS  PubMed  Google Scholar 

  65. Ciaffoni F et al (2015) Activation of non-canonical TGF-beta1 signaling indicates an autoimmune mechanism for bone marrow fibrosis in primary myelofibrosis. Blood Cells Mol Dis 54(3):234–241

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Sipe JB et al (2004) Localization of bone morphogenetic proteins (BMPs)-2, -4, and -6 within megakaryocytes and platelets. Bone 35(6):1316–1322

    Article  CAS  PubMed  Google Scholar 

  67. Garimella R et al (2007) Expression of bone morphogenetic proteins and their receptors in the bone marrow megakaryocytes of GATA-1(low) mice: a possible role in osteosclerosis. J Histochem Cytochem 55(7):745–752

    Article  CAS  PubMed  Google Scholar 

  68. Bock O et al (2008) Bone morphogenetic proteins are overexpressed in the bone marrow of primary myelofibrosis and are apparently induced by fibrogenic cytokines. Am J Pathol 172(4):951–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Maeda S et al (2004) Endogenous TGF-beta signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J 23(3):552–563

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Spinella-Jaegle S et al (2001) Opposite effects of bone morphogenetic protein-2 and transforming growth factor-beta1 on osteoblast differentiation. Bone 29(4):323–330

    Article  CAS  PubMed  Google Scholar 

  71. Bodo M et al (1992) Interleukin-1 alpha: regulation of cellular proliferation and collagen synthesis in cultured human osteoblast-like cells. Cell Mol Biol. https://doi.org/10.1016/S8756-3282(01)00580-4

    Article  PubMed  Google Scholar 

  72. Ikeda E et al (1988) Effect of interleukin 1 beta on osteoblastic clone MC3T3-E1 cells. Calcif Tissue Int 43(3):162–166

    Article  CAS  PubMed  Google Scholar 

  73. Jiang S et al (1994) Cytokine production by primary bone marrow megakaryocytes. Blood 84(12):4151–4156

    Article  CAS  PubMed  Google Scholar 

  74. Wickenhauser C et al (1995) Secretion of cytokines (interleukins-1 alpha, -3, and -6 and granulocyte-macrophage colony-stimulating factor) by normal human bone marrow megakaryocytes. Blood 85(3):685–691

    Article  CAS  PubMed  Google Scholar 

  75. Wang T, He C (2020) TNF-alpha and IL-6: the link between immune and bone system. Curr Drug Targets 21(3):213–227

    CAS  PubMed  Google Scholar 

  76. Winter O et al (2010) Megakaryocytes constitute a functional component of a plasma cell niche in the bone marrow. Blood 116(11):1867–1875

    Article  CAS  PubMed  Google Scholar 

  77. Tatakis DN (1992) Human platelet factor 4 is a direct inhibitor of human osteoblast-like osteosarcoma cell growth. Biochem Biophys Res Commun 187(1):287–293

    Article  CAS  PubMed  Google Scholar 

  78. Kohler A et al (2011) G-CSF-mediated thrombopoietin release triggers neutrophil motility and mobilization from bone marrow via induction of Cxcr2 ligands. Blood 117(16):4349–4357

    Article  PubMed Central  PubMed  Google Scholar 

  79. Yang Y et al (2019) CXCL2 attenuates osteoblast differentiation by inhibiting the ERK1/2 signaling pathway. J Cell Sci. https://doi.org/10.1242/jcs.230490

    Article  PubMed Central  PubMed  Google Scholar 

  80. Huang H, Ma L, Kyrkanides S (2016) Effects of vascular endothelial growth factor on osteoblasts and osteoclasts. Am J Orthod Dentofacial Orthop 149(3):366–373

    Article  PubMed  Google Scholar 

  81. Knaup I et al (2022) Impact of FGF1 on human periodontal ligament fibroblast growth, osteogenic differentiation and inflammatory reaction in vitro. J Orofac Orthop 83(Suppl 1):42–55

    Article  PubMed  Google Scholar 

  82. Yang X et al (2006) Sprouty genes are expressed in osteoblasts and inhibit fibroblast growth factor-mediated osteoblast responses. Calcif Tissue Int 78(4):233–240

    Article  CAS  PubMed  Google Scholar 

  83. Breton-Gorius J et al (1992) Localization of platelet osteonectin at the internal face of the alpha-granule membranes in platelets and megakaryocytes. Blood 79(4):936–941

    Article  CAS  PubMed  Google Scholar 

  84. Murate T et al (1997) The production of tissue inhibitors of metalloproteinases (TIMPs) in megakaryopoiesis: possible role of platelet- and megakaryocyte-derived TIMPs in bone marrow fibrosis. Br J Haematol 99(1):181–189

    Article  CAS  PubMed  Google Scholar 

  85. Tiedemann K, Tsao S, Komarova SV (2022) Platelets and osteoblasts: secretome connections. Am J Physiol Cell Physiol 323(2):C347–C353

    Article  CAS  PubMed  Google Scholar 

  86. Yang D, de Haan G (2021) Inflammation and aging of hematopoietic stem cells in their niche. Cells. https://doi.org/10.3390/cells10081849

    Article  PubMed Central  PubMed  Google Scholar 

  87. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest. 105(7):915–923. https://doi.org/10.1172/JCI7039. Erratum in: J Clin Invest 2000 May;105(9):1325. PMID: 10749571; PMCID: PMC377474

  88. Hofbauer LC, Khosla S, Dunstan CR, Lacey DL, Boyle WJ, Riggs BL (2000) The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res 15(1):2–12. https://doi.org/10.1359/jbmr.2000.15.1.2

  89. Bailey Dubose K, Zayzafoon M, Murphy-Ullrich JE (2012) Thrombospondin-1 inhibits osteogenic differentiation of human mesenchymal stem cells through latent TGF-β activation. Biochem Biophys Res Commun. 422(3):488–493. https://doi.org/10.1016/j.bbrc.2012.05.020

  90. Jeanneau C, Sultan Y (1988) Tissue plasminogen activator in human megakaryocytes and platelets: immunocytochemical localization, immunoblotting and zymographic analysis. Thromb Haemost 59(3):529–534

    Article  CAS  PubMed  Google Scholar 

  91. Daci E et al (2003) Increased bone formation in mice lacking plasminogen activators. J Bone Miner Res 18(7):1167–1176

    Article  CAS  PubMed  Google Scholar 

  92. Meijome TE et al (2015) GATA-1 deficiency rescues trabecular but not cortical bone in OPG deficient mice. J Cell Physiol 230(4):783–790

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Gazit D et al (1998) Bone loss (osteopenia) in old male mice results from diminished activity and availability of TGF-beta. J Cell Biochem 70(4):478–488

    Article  CAS  PubMed  Google Scholar 

  94. Thiede MA et al (1994) Presence of messenger ribonucleic acid encoding osteocalcin, a marker of bone turnover, in bone marrow megakaryocytes and peripheral blood platelets. Endocrinology 135(3):929–937

    Article  CAS  PubMed  Google Scholar 

  95. Bord S et al (2004) Synthesis of osteoprotegerin and RANKL by megakaryocytes is modulated by oestrogen. Br J Haematol 126(2):244–251

    Article  CAS  PubMed  Google Scholar 

  96. Kartsogiannis V et al (1999) Localization of RANKL (receptor activator of NF kappa B ligand) mRNA and protein in skeletal and extraskeletal tissues. Bone 25(5):525–534

    Article  CAS  PubMed  Google Scholar 

  97. Chagraoui H et al (2003) Expression of osteoprotegerin mRNA and protein in murine megakaryocytes. Exp Hematol 31(11):1081–1088

    Article  CAS  PubMed  Google Scholar 

  98. Bord S et al (2005) Megakaryocytes modulate osteoblast synthesis of type-l collagen, osteoprotegerin, and RANKL. Bone 36(5):812–819

    Article  CAS  PubMed  Google Scholar 

  99. Beeton CA et al (2006) Osteoclast formation and bone resorption are inhibited by megakaryocytes. Bone 39(5):985–990

    Article  CAS  PubMed  Google Scholar 

  100. Kacena MA et al (2006) Megakaryocyte-mediated inhibition of osteoclast development. Bone 39(5):991–999

    Article  CAS  PubMed  Google Scholar 

  101. Woolthuis CM, de Haan G, Huls G (2011) Aging of hematopoietic stem cells: Intrinsic changes or micro-environmental effects? Curr Opin Immunol 23(4):512–517

    Article  CAS  PubMed  Google Scholar 

  102. Chollet ME et al (2010) Evidence of a colocalisation of osteoprotegerin (OPG) with von Willebrand factor (VWF) in platelets and megakaryocytes alpha granules. Studies from normal and grey platelets. Br J Haematol. https://doi.org/10.1111/j.1365-2141.2009.07989.x

    Article  PubMed  Google Scholar 

  103. Kacena MA, Ciovacco WA (2010) Megakaryocyte-bone cell interactions. Adv Exp Med Biol 658:31–41

    Article  CAS  PubMed  Google Scholar 

  104. Kanagasabapathy D et al (2020) Megakaryocytes promote osteoclastogenesis in aging. Aging (Albany NY) 12(14):15121–15133

    Article  CAS  PubMed  Google Scholar 

  105. Lovibond AC et al (2003) TGF-beta-induced SOCS3 expression augments TNF-alpha-induced osteoclast formation. Biochem Biophys Res Commun 309(4):762–767

    Article  CAS  PubMed  Google Scholar 

  106. Amarasekara DS et al (2018) Regulation of osteoclast differentiation by cytokine networks. Immune Netw 18(1):e8

    Article  PubMed Central  PubMed  Google Scholar 

  107. Yun‐Sen, Zhu Yong, Gu Chang, Jiang Liang, Chen (2020) Osteonectin regulates the extracellular matrix mineralization of osteoblasts through P38 signaling pathway. J Cell Physiol 235(3):2220–2231. https://doi.org/10.1002/jcp.29131

  108. Feng X, Teitelbaum SL (2013) Osteoclasts: new insights. Bone Res 1(1):11–26

    Article  PubMed  Google Scholar 

  109. Suva LJ, Hartman E, Dilley JD, Russell S, Akel NS, Skinner RA, Hogue WR, Budde U, Varughese KI, Kanaji T, Ware J (2008) Platelet dysfunction and a high bone mass phenotype in a murine model of platelet-type von Willebrand disease. Am J Pathol 172(2):430–439. https://doi.org/10.2353/ajpath.2008.070417

  110. Mohle R et al (1997) Constitutive production and thrombin-induced release of vascular endothelial growth factor by human megakaryocytes and platelets. Proc Natl Acad Sci U S A 94(2):663–668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Hong MH et al (2000) The inhibitory effect of interleukin-10 on mouse osteoclast formation involves novel tyrosine-phosphorylated proteins. J Bone Miner Res 15(5):911–918

    Article  CAS  PubMed  Google Scholar 

  112. Liu D, Yao S, Wise GE (2006) Effect of interleukin-10 on gene expression of osteoclastogenic regulatory molecules in the rat dental follicle. Eur J Oral Sci 114(1):42–49

    Article  CAS  PubMed  Google Scholar 

  113. Mosser DM, Zhang X (2008) Interleukin-10: new perspectives on an old cytokine. Immunol Rev 226:205–218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Houri-Haddad Y et al (2007) IL-10 gene transfer attenuates P. gingivalis-induced inflammation. J Dent Res. https://doi.org/10.1177/154405910708600614

    Article  PubMed  Google Scholar 

  115. Carmody EE et al (2002) Viral interleukin-10 gene inhibition of inflammation, osteoclastogenesis, and bone resorption in response to titanium particles. Arthritis Rheum 46(5):1298–1308

    Article  CAS  PubMed  Google Scholar 

  116. Malara A et al (2015) The secret life of a megakaryocyte: emerging roles in bone marrow homeostasis control. Cell Mol Life Sci 72(8):1517–1536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Fazzalari NL et al (2001) The ratio of messenger RNA levels of receptor activator of nuclear factor kappaB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis. J Bone Miner Res 16(6):1015–1027

    Article  CAS  PubMed  Google Scholar 

  118. Cao J et al (2003) Expression of RANKL and OPG correlates with age-related bone loss in male C57BL/6 mice. J Bone Miner Res 18(2):270–277

    Article  CAS  PubMed  Google Scholar 

  119. Cao JJ et al (2005) Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. J Bone Miner Res 20(9):1659–1668

    Article  CAS  PubMed  Google Scholar 

  120. Tourolle DC et al (2021) Ten-year simulation of the effects of denosumab on bone remodeling in human biopsies. JBMR Plus 5(6):e10494

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  121. Rokkam VR, K.R., Secondary Thrombocytosis. 2022, Treasure Island (FL): StatPearls Publishing.

  122. Kacena MA, Horowitz MC (2006) The role of megakaryocytes in skeletal homeostasis and rheumatoid arthritis. Curr Opin Rheumatol 18(4):405–410

    Article  PubMed  Google Scholar 

  123. Ostrowska M et al (2018) Cartilage and bone damage in rheumatoid arthritis. Reumatologia 56(2):111–120

    Article  PubMed Central  PubMed  Google Scholar 

  124. Wang Y et al (2022) Rheumatoid arthritis, systemic lupus erythematosus and primary Sjögren’s syndrome shared megakaryocyte expansion in peripheral blood. Ann Rheum Dis 81(3):379–385

    Article  CAS  PubMed  Google Scholar 

  125. Narducci P, Bareggi R, Nicolin V (2011) Receptor activator for nuclear factor kappa B ligand (RANKL) as an osteoimmune key regulator in bone physiology and pathology. Acta Histochem 113(2):73–81

    Article  CAS  PubMed  Google Scholar 

  126. Sarzi-Puttini P et al (2005) Osteoarthritis: an overview of the disease and its treatment strategies. Semin Arthritis Rheum 35(1 Suppl 1):1–10

    Article  CAS  PubMed  Google Scholar 

  127. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8(11):665–673

    Article  CAS  PubMed  Google Scholar 

  128. Lorenz H, Richter W (2006) Osteoarthritis: cellular and molecular changes in degenerating cartilage. Prog Histochem Cytochem 40(3):135–163

    Article  CAS  PubMed  Google Scholar 

  129. Kapoor M et al (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42

    Article  CAS  PubMed  Google Scholar 

  130. Rhodes M (2022) Hematopoietic elements in osteoarthritic femurs compared to normal bone marrow as evaluated by immunohistochemistry. Biomed J Sci Tech Res 44(2):35300–35305

    Google Scholar 

  131. Zhang J et al (2019) CD226 is involved in megakaryocyte activation and early-stage differentiation. Mol Immunol 107:123–131

    Article  CAS  PubMed  Google Scholar 

  132. Zhang J et al (2020) Deficiency of platelet adhesion molecule CD226 causes megakaryocyte development and platelet hyperactivity. FASEB J 34(5):6871–6887

    Article  CAS  PubMed  Google Scholar 

  133. Huang Z et al (2020) CD226: an emerging role in immunologic diseases. Front Cell Dev Biol 8:564

    Article  PubMed Central  PubMed  Google Scholar 

  134. Liu Y et al (2021) CD226 Is required to maintain megakaryocytes/platelets homeostasis in the treatment of knee osteoarthritis with platelet-rich plasma in mice. Front Pharmacol 12:732453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Pillai NR, Aggarwal A, Orchard P (2022) Phenotype-autosomal recessive osteopetrosis. Bone 165:116577

    Article  CAS  PubMed  Google Scholar 

  136. Penna S, Villa A, Capo V (2021) Autosomal recessive osteopetrosis: mechanisms and treatments. Dis Model Mech. https://doi.org/10.1242/dmm.048940

    Article  PubMed Central  PubMed  Google Scholar 

  137. Charoenngam N et al (2022) Hereditary metabolic bone diseases: a review of pathogenesis. Diagn Manage Genes (Basel). https://doi.org/10.3390/genes13101880

    Article  Google Scholar 

  138. Unger S et al (2023) Nosology of genetic skeletal disorders: 2023 revision. Am J Med Genet A. https://doi.org/10.1002/ajmg.a.63132

    Article  PubMed  Google Scholar 

  139. Yorgan T et al (2018) The high bone mass phenotype of Lrp5-mutant mice is not affected by megakaryocyte depletion. Biochem Biophys Res Commun 497(2):659–666

    Article  CAS  PubMed  Google Scholar 

  140. Crispino JD, Horwitz MS (2017) GATA factor mutations in hematologic disease. Blood 129(15):2103–2110

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Stavnichuk M et al (2021) Severity of megakaryocyte-driven osteosclerosis in Mpig6b-deficient mice is sex-linked. J Bone Miner Res 36(4):803–813

    Article  CAS  PubMed  Google Scholar 

  142. Becker IC et al (2022) G6b-B regulates an essential step in megakaryocyte maturation. Blood Adv 6(10):3155–3161

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  143. Tella SH, Gallagher JC (2014) Prevention and treatment of postmenopausal osteoporosis. J Steroid Biochem Mol Biol 142:155–170

    Article  CAS  PubMed  Google Scholar 

  144. Fischer V, Haffner-Luntzer M (2022) Interaction between bone and immune cells: implications for postmenopausal osteoporosis. Semin Cell Dev Biol 123:14–21

    Article  PubMed  Google Scholar 

  145. Cheng CH, Chen LR, Chen KH (2022) Osteoporosis due to hormone imbalance: an overview of the effects of estrogen deficiency and glucocorticoid overuse on bone turnover. Int J Mol Sci. https://doi.org/10.3390/ijms23031376

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

Figures were created using BioRender.com. This work was completed in part by funding from the Cooperative Center of Excellence in Hematology (CCEH) Indianapolis-Indiana University School of Medicine to AB and MAK. This work was supported in part with funding, resources, and the use of facilities at the School of Medicine and the School of Dentistry at Indiana University and the Richard L. Roudebush VA Medical Center, Indianapolis, IN.

Funding

NIH-NIAMS AR080076, Angela Bruzzaniti; NIH DK108342, DK118782/AG082275, AG060621, U.S. Department of Veterans Affairs I01RX003552, 1I01BX003751, Melissa A. Kacena.

Author information

Authors and Affiliations

Authors

Contributions

AB and MAK conceptualized and designed the review article. Together SJK and MKN wrote the first draft of the manuscript. All authors completed literature searches, revised the manuscript critically for important intellectual content, take responsibility for all aspects of the work, and approve of the final version of the manuscript. AB are jointly responsible for the overall contents of the manuscript.

Corresponding authors

Correspondence to Melissa A. Kacena or Angela Bruzzaniti.

Ethics declarations

Conflict of interest

Sonali J. Karnik, Murad K. Nazzal, Melissa A. Kacena, and Angela Bruzzaniti declare that they have no competing interests that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karnik, S.J., Nazzal, M.K., Kacena, M.A. et al. Megakaryocyte Secreted Factors Regulate Bone Marrow Niche Cells During Skeletal Homeostasis, Aging, and Disease. Calcif Tissue Int 113, 83–95 (2023). https://doi.org/10.1007/s00223-023-01095-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01095-y

Keywords

Navigation