Skip to main content

Advertisement

Log in

Nonresponder Considerations for Romosozumab Treatment

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Romosozumab can increase bone mineral density (BMD) in patients with osteoporosis, but some patients do not respond to it. This study aimed to identify risk factors for being a nonresponder to romosozumab treatment. This retrospective observational study included 92 patients. Romosozumab (210 mg) was subcutaneously administered to the participants every 4 weeks over 12 months. We excluded patients who previously underwent treatment for osteoporosis to assess the impact of romosozumab alone. We evaluated the proportion of patients who did not respond to romosozumab treatment to the lumbar spine and hip with increased BMD. Nonresponders were defined as those with a bone density change of < 3% after 12 months of treatment. We compared demographics and biochemical markers between responders and nonresponders. We found that 11.5% of patients were nonresponders at the lumbar spine, and 56.8% were nonresponders at the hip. A risk factor for nonresponse at the spine was low type I procollagen N-terminal propeptide (P1NP) values at 1 month. The cutoff value for P1NP at month 1 was 50 ng/ml. We found that 11.5% and 56.8% of patients experienced no significant improvement in the lumbar spine and hip BMD, respectively. Clinicians should use nonresponse risk factors to inform decisions about romosozumab treatment for patients with osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lems WF, Raterman HG (2017) Critical issues and current challenges in osteoporosis and fracture prevention. An overview of unmet needs. Ther Adv Musculoskelet Dis 9:299–316. https://doi.org/10.1177/1759720X17732562

    Article  PubMed  PubMed Central  Google Scholar 

  2. Anam AK, Insogna K, Anam A, Insogna K (2021) Update on osteoporosis screening and management. Medical Clin N 105:1117–1134. https://doi.org/10.1016/j.mcna.2021.05.016

    Article  Google Scholar 

  3. Johnell O, Kanis JA, Odén A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jönsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42. https://doi.org/10.1007/s00198-003-1490-4

    Article  CAS  PubMed  Google Scholar 

  4. Morin S, Lix LM, Azimaee M, Metge C, Caetano P, Leslie WD (2011) Mortality rates after incident non-traumatic fractures in older men and women. Osteoporos Int 22:2439–2448. https://doi.org/10.1007/s00198-010-1480-2

    Article  CAS  PubMed  Google Scholar 

  5. Soen S, Usuba K, Crawford B, Adachi K (2021) Family caregiver burden of patients with osteoporotic fracture in Japan. J Bone Miner Metab 39:612–622. https://doi.org/10.1007/s00774-020-01197-9

    Article  PubMed  Google Scholar 

  6. Sambrook PN, Cameron ID, Chen JS, March LM, Simpson JM, Cumming RG, Seibel MJ (2011) Oral bisphosphonates are associated with reduced mortality in frail older people: a prospective five-year study. Osteoporos Int 22:2551–2556. https://doi.org/10.1007/s00198-010-1444-6

    Article  CAS  PubMed  Google Scholar 

  7. Iida H, Sakai Y, Seki T, Watanabe T, Wakao N, Matsui H, Imagama S (2022) Bisphosphonate treatment is associated with decreased mortality rates in patients after osteoporotic vertebral fracture. Osteoporos Int. https://doi.org/10.1007/s00198-021-06264-z

    Article  PubMed  Google Scholar 

  8. Balemans W (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10:537–543. https://doi.org/10.1093/hmg/10.5.537

    Article  CAS  PubMed  Google Scholar 

  9. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S, Hofbauer LC, Lau E, Lewiecki EM, Miyauchi A, Zerbini CAF, Milmont CE, Chen L, Maddox J, Meisner PD, Libanati C, Grauer A (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375:1532–1543. https://doi.org/10.1056/NEJMoa1607948

    Article  CAS  PubMed  Google Scholar 

  10. Tominaga A, Wada K, Okazaki K, Nishi H, Terayama Y, Kato Y (2021) Early clinical effects, safety, and predictors of the effects of romosozumab treatment in osteoporosis patients: one-year study. Osteoporos Int 32:1999–2009. https://doi.org/10.1007/s00198-021-05925-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ebina K, Tsuboi H, Nagayama Y, Kashii M, Kaneshiro S, Miyama A, Nakaya H, Kunugiza Y, Hirao M, Okamura G, Etani Y, Takami K, Goshima A, Miura T, Nakata K, Okada S (2021) Effects of prior osteoporosis treatment on 12-month treatment response of romosozumab in patients with postmenopausal osteoporosis. Joint Bone Spine 88:105219. https://doi.org/10.1016/j.jbspin.2021.105219

    Article  CAS  PubMed  Google Scholar 

  12. Kobayakawa T, Suzuki T, Nakano M, Saito M, Miyazaki A, Takahashi J, Nakamura Y (2021) Real-world effects and adverse events of romosozumab in Japanese osteoporotic patients: a prospective cohort study. Bone Rep 14:101068. https://doi.org/10.1016/j.bonr.2021.101068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Langdahl BL, Libanati C, Crittenden DB, Bolognese MA, Brown JP, Daizadeh NS, Dokoupilova E, Engelke K, Finkelstein JS, Genant HK, Goemaere S, Hyldstrup L, Jodar-Gimeno E, Keaveny TM, Kendler D, Lakatos P, Maddox J, Malouf J, Massari FE, Molina JF, Ulla MR, Grauer A (2017) Romosozumab (sclerostin monoclonal antibody) versus teriparatide in postmenopausal women with osteoporosis transitioning from oral bisphosphonate therapy: a randomised, open-label, phase 3 trial. Lancet 390:1585–1594. https://doi.org/10.1016/S0140-6736(17)31613-6

    Article  CAS  PubMed  Google Scholar 

  14. Cosman F, Kendler DL, Langdahl BL, Leder BZ, Lewiecki EM, Miyauchi A, Rojeski M, McDermott M, Oates MK, Milmont CE, Libanati C, Ferrari S (2022) Romosozumab and antiresorptive treatment: the importance of treatment sequence. Osteoporos Int 33:1243–1256. https://doi.org/10.1007/s00198-021-06174-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Roman SA, Roman S, Sosa J, Pietrzak R, Snyder P, Thomas D, Udelsman R, Mayes L et al (2011) The effects of serum calcium and parathyroid hormone changes on psychological and cognitive function in patients undergoing parathyroidectomy for primary hyperparathyroidism. Ann Surg 253:131–137. https://doi.org/10.1097/SLA.0b013e3181f66720

    Article  PubMed  Google Scholar 

  16. Holick MF (2017) The vitamin D deficiency pandemic: Approaches for diagnosis, treatment and prevention. Rev Endocr Metab Disord 18:153–165. https://doi.org/10.1007/s11154-017-9424-1

    Article  CAS  PubMed  Google Scholar 

  17. Tothill P, Fenner JAK, Reid DM, Tothill P, Fenner JAK, Reid DM (1995) Comparisons between three dual-energy X-ray absorptiometers used for measuring spine and femur. Br J Radiol 68:621–629. https://doi.org/10.1259/0007-1285-68-810-621

    Article  CAS  PubMed  Google Scholar 

  18. Cavalier E, Souberbielle JC, Gadisseur R, Dubois B, Krzesinski JM, Delanaye P (2014) Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem 47:1227–1230. https://doi.org/10.1016/j.clinbiochem.2014.04.007

    Article  CAS  PubMed  Google Scholar 

  19. Eastell R, Krege JH, Chen P, Glass EV, Reginster JY (2006) Development of an algorithm for using PINP to monitor treatment of patients with teriparatide. Curr Med Res Opin 22:61–66. https://doi.org/10.1185/030079905X75096

    Article  CAS  PubMed  Google Scholar 

  20. Igarashi Y, Lee MY, Matsuzaki S (2002) Acid phosphatases as markers of bone metabolism. J Chromatogr B Analyt Technol Biomed Life Sci 781:345–358. https://doi.org/10.1016/s1570-0232(02)00431-2

    Article  CAS  PubMed  Google Scholar 

  21. Gertz BJ, Clemens JD, Holland SD, Yuan W, Greenspan S (1998) Application of a new serum assay for type I collagen cross-linked n-telopeptides: assessment of diurnal changes in bone turnover with and without alendronate treatment. Calcif Tissue Int 63:102–106. https://doi.org/10.1007/s002239900497

    Article  CAS  PubMed  Google Scholar 

  22. Garnero P, Vergnaud P, Hoyle N, Garnero P, Vergnaud P, Hoyle N (2008) Evaluation of a fully automated serum assay for total N-terminal propeptide of type I collagen in postmenopausal osteoporosis. Clin Chem 54:188–196. https://doi.org/10.1373/clinchem.2007.094953

    Article  CAS  PubMed  Google Scholar 

  23. Szulc P, Naylor K, Hoyle NR, Eastell R, Leary ET (2017) Use of CTX-I and PINP as bone turnover markers: National Bone Health Alliance recommendations to standardize sample handling and patient preparation to reduce pre-analytical variability. Osteoporos Int 28:2541–2556. https://doi.org/10.1007/s00198-017-4082-4

    Article  CAS  PubMed  Google Scholar 

  24. Yamada S, Inaba M, Kurajoh M, Shidara K, Imanishi Y, Ishimura E, Nishizawa Y (2008) Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol (Oxf) 69:189–196. https://doi.org/10.1111/j.1365-2265.2008.03187.x

    Article  CAS  PubMed  Google Scholar 

  25. Fogelman I, Blake GM (2000) Different approaches to bone densitometry. J Nucl Med 41:2015–2025

    CAS  PubMed  Google Scholar 

  26. Gallagher JC, Rosen CJ, Chen P, Misurski DA, Marcus R (2006) Response rate of bone mineral density to teriparatide in postmenopausal women with osteoporosis. Bone 39:1268–1275. https://doi.org/10.1016/j.bone.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  27. Miller PD, Hattersley G, Lau E, Fitzpatrick LA, Harris AG, Williams GC, Hu MY, Riis BJ, Russo L, Christiansen C (2019) Bone mineral density response rates are greater in patients treated with abaloparatide compared with those treated with placebo or teriparatide: Results from the ACTIVE phase 3 trial. Bone 120:137–140. https://doi.org/10.1016/j.bone.2018.10.015

    Article  CAS  PubMed  Google Scholar 

  28. Niimi R, Kono T, Nishihara A, Hasegawa M, Kono T, Sudo A (2016) A retrospective analysis of nonresponse to daily teriparatide treatment. Osteoporos Int 27:2845–2853. https://doi.org/10.1007/s00198-016-3581-z

    Article  CAS  PubMed  Google Scholar 

  29. Cosman F, Crittenden DB, Ferrari S, Khan A, Lane NE, Lippuner K, Matsumoto T, Milmont CE, Libanati C, Grauer A (2018) FRAME study: the foundation effect of building bone with 1 year of romosozumab leads to continued lower fracture risk after transition to denosumab. J Bone Miner Res 33:1219–1226. https://doi.org/10.1002/jbmr.3427

    Article  CAS  PubMed  Google Scholar 

  30. Kanda Y (2013) Investigation of the freely available easy-to-use software ‘EZR’ for medical statistics. Bone Marrow Transplant 48:452–458. https://doi.org/10.1038/bmt.2012.244

    Article  CAS  PubMed  Google Scholar 

  31. Ishibashi H, Ishibashi H, Crittenden D, Miyauchi A, Libanati C, Maddox J, Fan M, Chen L, Grauer A et al (2017) Romosozumab increases bone mineral density in postmenopausal Japanese women with osteoporosis: a phase 2 study. Bone (New York, NY) 103:209–215. https://doi.org/10.1016/j.bone.2017.07.005

    Article  CAS  Google Scholar 

  32. Takada J, Dinavahi R, Miyauchi A, Hamaya E, Hirama T, Libanati C, Nakamura Y, Milmont CE, Grauer A (2020) Relationship between P1NP, a biochemical marker of bone turnover, and bone mineral density in patients transitioned from alendronate to romosozumab or teriparatide: a post hoc analysis of the STRUCTURE trial. J Bone Miner Metab 38:310–315. https://doi.org/10.1007/s00774-019-01057-1

    Article  CAS  PubMed  Google Scholar 

  33. Ominsky MS, Niu Q-T, Li C, Li X, Ke HZ (2014) Tissue-level mechanisms responsible for the increase in bone formation and bone volume by sclerostin antibody. J Bone Miner Res 29:1424–1430. https://doi.org/10.1002/jbmr.2152

    Article  CAS  PubMed  Google Scholar 

  34. Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK (2011) Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int 22:357–362. https://doi.org/10.1007/s00198-010-1226-1

    Article  CAS  PubMed  Google Scholar 

  35. Tsujimoto M, Chen P, Miyauchi A, Sowa H, Krege JH (2011) PINP as an aid for monitoring patients treated with teriparatide. Bone 48:798–803. https://doi.org/10.1016/j.bone.2010.12.006

    Article  CAS  PubMed  Google Scholar 

  36. Shimizu T, Arita K, Murota E, Hiratsuka S, Fujita R, Ishizu H, Asano T, Takahashi D, Takahata M, Iwasaki N (2021) Effects after starting or switching from bisphosphonate to romosozumab or denosumab in Japanese postmenopausal patients. J Bone Miner Metab 39:868–875. https://doi.org/10.1007/s00774-021-01226-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tominaga A, Wada K, Kato Y, Nishi H, Terayama Y, Okazaki K (2021) Early clinical effects, safety, and appropriate selection of bone markers in romosozumab treatment for osteoporosis patients: a 6-month study. Osteoporos Int 32:653–661. https://doi.org/10.1007/s00198-020-05639-y

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Enago (www.enago.com) for the manuscript review and editing support.

Funding

This work was partly supported by a research grant from Tokyo Women’s Medical University Career Development Center for Medical Professionals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Tominaga.

Ethics declarations

Conflict of interest

Ayako Tominaga, Ken Okazaki, Hideharu Nishi, Yasushi Terayama, Shuji Shimamoto, Yasuteru Kodama, and Yoshiharu Kato declare that they have no conflicts of interest. Keiji Wada received a speaking fee from Amgen Inc.

Ethical approval

The procedures complied with the 1964 Helsinki declaration and its later amendments and were approved by Tokyo Women’s Medical University Ethics Committee, number 5596.

Informed consent

Informed consent was obtained from all participants in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tominaga, A., Wada, K., Okazaki, K. et al. Nonresponder Considerations for Romosozumab Treatment. Calcif Tissue Int 113, 157–165 (2023). https://doi.org/10.1007/s00223-023-01087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01087-y

Keywords

Navigation