Skip to main content
Log in

Spondyloarthritis and Sarcopenia: Prevalence of Probable Sarcopenia and its Impact on Disease Burden: The Saspar Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To evaluate the prevalence of probable, confirmed, and severe sarcopenia in spondyloarthritis (SpA), according to the European Working Group on Sarcopenia in Older People 2019 (EWGSOP2) definition. A total of 103 patients (51% women) with SpA, mean age 47.1 ± 13.7 years, were included and compared to 103 age- and sex-matched controls. Grip strength was measured by dynamometry. Body composition was assessed by whole-body densitometry. In SpA patients gait speed was measured by the 4-m-distance walk test and quality of life was evaluated with a specific health-related questionnaire for sarcopenia (SaRQoL®). Twenty-two SpA patients (21%) versus 7 controls (7%) had a low grip strength, i.e., probable sarcopenia (p < 0.01), 15 SpA (15%) patients and 7 controls (7%) had low Skeletal Muscle mass Index (SMI) (ns), respectively, and 5 and 2% of SpA patients and controls had low grip strength and low SMI, i.e., confirmed sarcopenia (ns). All the sarcopenic SpA patients had a low gait speed, i.e., severe sarcopenia. Finally, probable sarcopenic SpA patients had significantly higher C-Reactive Protein (CRP, p < 0.001) and Bath Ankylosing Spondylitis Disease Activity Index (BASDAI score, p < 0.01), lower gait speed (p < 0.001), and SarQoL® score (p < 0.001) than SpA patients with normal grip strength. According to EWGSOP2 definition, the prevalence of probable sarcopenia was significantly higher in SpA patients compared to controls. Probable sarcopenia was associated with higher inflammation and disease activity, impaired muscle performance, and quality of life. These results suggest that muscle strength may be a salient hallmark in SpA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner RN, Koehler KM, Gallagher D, Romero L, Heymsfield SB, Ross RR et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147(8):755–763

    Article  CAS  PubMed  Google Scholar 

  2. Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people. Age Ageing 39(4):412–423

    Article  PubMed  PubMed Central  Google Scholar 

  3. Tournadre A, Vial G, Capel F, Soubrier M, Boirie Y (2019) Sarcopenia. Joint Bone Spine 86(3):309–314

    Article  PubMed  Google Scholar 

  4. An HJ, Tizaoui K, Terrazzino S, Cargnin S, Lee KH, Nam SW et al (2020) Sarcopenia in autoimmune and rheumatic diseases: a comprehensive review. Int J Mol Sci 21(16):5678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA et al (2020) Sarcopenia definition: the position statements of the Sarcopenia definition and outcomes consortium. J Am Geriatr Soc 68(7):1410–1418

    Article  PubMed  Google Scholar 

  6. Muscaritoli M, Anker SD, Argiles J, Aversa Z, Bauer JM, Biolo G et al (2010) Consensus definition of sarcopenia, cachexia and pre-cachexia: joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics.” Clin Nutr 29(2):154–159

    Article  CAS  PubMed  Google Scholar 

  7. Cao L, Morley JE (2016) Sarcopenia is recognized as an independent condition by an international classification of disease, tenth revision, clinical modification (ICD-10-CM) code. J Am Med Dir Assoc 17(8):675–677

    Article  PubMed  Google Scholar 

  8. Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyere O, Cederholm T et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48(1):16–31

    Article  PubMed  Google Scholar 

  9. Saraux A, Guillemin F, Guggenbuhl P, Roux CH, Fardellone P, Le Bihan E et al (2005) Prevalence of spondyloarthropathies in France: 2001. Ann Rheum Dis 64(10):1431–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Valido A, Crespo CL, Pimentel-Santos FM (2019) Muscle evaluation in axial spondyloarthritis-the evidence for Sarcopenia. Front Med (Lausanne) 6:219

    Article  PubMed  Google Scholar 

  11. Aguiar R, Sequeira J, Meirinhos T, Ambrosio C, Barcelos A (2014) SARCOSPA - Sarcopenia in spondyloarthritis patients. Acta Reumatol Port 39(4):322–326

    CAS  PubMed  Google Scholar 

  12. El Maghraoui A, Ebo’o FB, Sadni S, Majjad A, Hamza T, Mounach A (2016) Is there a relation between pre-sarcopenia, sarcopenia, cachexia and osteoporosis in patients with ankylosing spondylitis? BMC Musculoskelet Disord 17:268

    Article  PubMed  PubMed Central  Google Scholar 

  13. Barone M, Viggiani MT, Anelli MG, Fanizzi R, Lorusso O, Lopalco G et al (2018) Sarcopenia in patients with rheumatic diseases: prevalence and associated risk factors. J Clin Med. 7(12):504

    Article  PubMed  PubMed Central  Google Scholar 

  14. Krajewska-Wlodarczyk M, Owczarczyk-Saczonek A, Placek W (2017) Changes in body composition and bone mineral density in postmenopausal women with psoriatic arthritis. Reumatologia 55(5):215–221

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD (2007) Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res 22(3):425–433

    Article  PubMed  Google Scholar 

  16. Nagy H, Sornay-Rendu E, Boutroy S, Vilayphiou N, Szulc P, Chapurlat R (2013) Impaired trabecular and cortical microarchitecture in daughters of women with osteoporotic fracture: the MODAM study. Osteoporos Int 24(6):1881–1889

    Article  CAS  PubMed  Google Scholar 

  17. Chaitou A, Boutroy S, Vilayphiou N, Munoz F, Delmas PD, Chapurlat R et al (2010) Association between bone turnover rate and bone microarchitecture in men: the STRAMBO study. J Bone Miner Res 25(11):2313–2323

    Article  PubMed  Google Scholar 

  18. Roberts HC, Denison HJ, Martin HJ, Patel HP, Syddall H, Cooper C et al (2011) A review of the measurement of grip strength in clinical and epidemiological studies: towards a standardised approach. Age Ageing 40(4):423–429

    Article  PubMed  Google Scholar 

  19. Neumann S, Kwisda S, Krettek C, Gaulke R (2017) Comparison of the grip strength using the martin-vigorimeter and the JAMAR-dynamometer: establishment of normal values. In Vivo 31(5):917–924

    PubMed  PubMed Central  Google Scholar 

  20. Andreoli A, Scalzo G, Masala S, Tarantino U, Guglielmi G (2009) Body composition assessment by dual-energy X-ray absorptiometry (DXA). Radiol Med 114(2):286–300

    Article  CAS  PubMed  Google Scholar 

  21. Beaudart C, Biver E, Reginster JY, Rizzoli R, Rolland Y, Bautmans I et al (2015) Development of a self-administrated quality of life questionnaire for sarcopenia in elderly subjects: the SarQoL. Age Ageing 44(6):960–966

    Article  PubMed  PubMed Central  Google Scholar 

  22. Marcora S, Casanova F, Williams E, Jones J, Elamanchi R, Lemmey A (2006) Preliminary evidence for cachexia in patients with well-established ankylosing spondylitis. Rheumatology (Oxford) 45(11):1385–1388

    Article  CAS  PubMed  Google Scholar 

  23. Beenakker KG, Ling CH, Meskers CG, de Craen AJ, Stijnen T, Westendorp RG et al (2010) Patterns of muscle strength loss with age in the general population and patients with a chronic inflammatory state. Ageing Res Rev 9(4):431–436

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kim SC, Lee YG, Park SB, Kim TH, Lee KH (2017) Muscle mass, strength, mobility, quality of life, and disease severity in ankylosing spondylitis patients: a preliminary study. Ann Rehabil Med 41(6):990–997

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dos Santos FP, Constantin A, Laroche M, Destombes F, Bernard J, Mazieres B et al (2001) Whole body and regional bone mineral density in ankylosing spondylitis. J Rheumatol 28(3):547–549

    PubMed  Google Scholar 

  26. Toussirot E, Michel F, Wendling D (2001) Bone density, ultrasound measurements and body composition in early ankylosing spondylitis. Rheumatology (Oxford) 40(8):882–888

    Article  CAS  PubMed  Google Scholar 

  27. Ben Tekaya A, Mehmli T, Ben Sassi M, Teyeb Z, Bouden S, Rouached L et al (2022) Effects of biologic and target synthetic disease-modifying anti-rheumatic drugs on sarcopenia in spondyloarthritis and rheumatoid arthritis: a systematic review and meta-analysis. Clin Rheumatol. https://doi.org/10.1007/s10067-022-06454-y

    Article  PubMed  Google Scholar 

  28. Reiss J, Iglseder B, Alzner R, Mayr-Pirker B, Pirich C, Kassmann H et al (2019) Consequences of applying the new EWGSOP2 guideline instead of the former EWGSOP guideline for sarcopenia case finding in older patients. Age Ageing 48(5):719–724

    Article  CAS  PubMed  Google Scholar 

  29. Locquet M, Beaudart C, Petermans J, Reginster JY, Bruyere O (2019) EWGSOP2 versus EWGSOP1: impact on the prevalence of sarcopenia and its major health consequences. J Am Med Dir Assoc 20(3):384–385

    Article  PubMed  Google Scholar 

  30. Yang L, Yao X, Shen J, Sun G, Sun Q, Tian X et al (2020) Comparison of revised EWGSOP criteria and four other diagnostic criteria of sarcopenia in Chinese community-dwelling elderly residents. Exp Gerontol 130:110798

    Article  CAS  PubMed  Google Scholar 

  31. Warzecha M, Amarowicz J, Berwecka M, Czerwinski E, Kumorek A (2020) Relation between risk of falls, sarcopenia and parameters assessing quality of skeletal muscles in a group of postmenopausal women. Menopause Rev 19(3):123–129

    Article  Google Scholar 

  32. Wallengren O, Bosaeus I, Frandin K, Lissner L, Falk Erhag H, Wetterberg H et al (2021) Comparison of the 2010 and 2019 diagnostic criteria for sarcopenia by the European Working Group on Sarcopenia in Older People (EWGSOP) in two cohorts of Swedish older adults. BMC Geriatr 21(1):600

    Article  PubMed  PubMed Central  Google Scholar 

  33. Rusman T, van Vollenhoven RF, van der Horst-Bruinsma IE (2018) Gender differences in axial spondyloarthritis: women are not so lucky. Curr Rheumatol Rep 20(6):35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maas F, Arends S, van der Veer E, Wink F, Efde M, Bootsma H et al (2016) Obesity is common in axial spondyloarthritis and is associated with poor clinical outcome. J Rheumatol 43(2):383–387

    Article  CAS  PubMed  Google Scholar 

  35. Ibanez Vodnizza S, Visman IM, van Denderen C, Lems WF, Jaime F, Nurmohamed MT et al (2017) Muscle wasting in male TNF-alpha blocker naive ankylosing spondylitis patients: a comparison of gender differences in body composition. Rheumatology (Oxford) 56(9):1566–1572

    Article  PubMed  Google Scholar 

  36. Rusman T, van Bentum RE, van der Horst-Bruinsma IE (2020) Sex and gender differences in axial spondyloarthritis: myths and truths. Rheumatology (Oxford) 59(Supplement_4):38–46

    Article  Google Scholar 

  37. Toussirot E (2020) The interrelations between biological and targeted synthetic agents used in inflammatory joint diseases, and obesity or body composition. Metabolites 10(3):107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hmamouchi I, Roux C, Paternotte S, Kolta S, Dougados M, Briot K (2014) Early increase of abdominal adiposity in patients with spondyloarthritis receiving anti-tumor necrosis factor-alpha treatment. J Rheumatol 41(6):1112–1117

    Article  CAS  PubMed  Google Scholar 

  39. Beaudart C, Reginster JY, Geerinck A, Locquet M, Bruyere O (2017) Current review of the SarQoL(R): a health-related quality of life questionnaire specific to sarcopenia. Expert Rev Pharmacoecon Outcomes Res 17(4):335–341

    Article  PubMed  Google Scholar 

  40. Witham MD, Heslop P, Dodds RM, Clegg AP, Hope SV, McDonald C et al (2022) Performance of the SarQoL quality of life tool in a UK population of older people with probable sarcopenia and implications for use in clinical trials: findings from the SarcNet registry. BMC Geriatr 22(1):368

    Article  PubMed  PubMed Central  Google Scholar 

  41. Schaap LA, van Schoor NM, Lips P, Visser M (2018) Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the longitudinal aging study Amsterdam. J Gerontol A Biol Sci Med Sci 73(9):1199–1204

    Article  PubMed  Google Scholar 

  42. Scott D, Hayes A, Sanders KM, Aitken D, Ebeling PR, Jones G (2014) Operational definitions of sarcopenia and their associations with 5-year changes in falls risk in community-dwelling middle-aged and older adults. Osteoporos Int 25(1):187–193

    Article  CAS  PubMed  Google Scholar 

  43. Lopez-Medina C, Molto A, Sieper J, Duruoz T, Kiltz U, Elzorkany B et al (2021) Prevalence and distribution of peripheral musculoskeletal manifestations in spondyloarthritis including psoriatic arthritis: results of the worldwide, cross-sectional ASAS-PerSpA study. RMD Open 7(1):e001450

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lauretani F, Russo CR, Bandinelli S, Bartali B, Cavazzini C, Di Iorio A et al (2003) Age-associated changes in skeletal muscles and their effect on mobility: an operational diagnosis of sarcopenia. J Appl Physiol 95(5):1851–60

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Charlotte Beaudart (WHO Collaborating Center for Public Health Aspects of Musculo-Skeletal Health and Ageing, Division of Public Health, Epidemiology and Health Economics, University of Liège, Liège. Belgium) who gave access to the SARQOL® questionnaire.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Blandine Merle.

Ethics declarations

Conflicts of interest

Blandine Merle, Marie Cottard, Elisabeth Sornay-Rendu, Pawel Szulc, and Roland Chapurlat declare no conflict of interest.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Merle, B., Cottard, M., Sornay-Rendu, E. et al. Spondyloarthritis and Sarcopenia: Prevalence of Probable Sarcopenia and its Impact on Disease Burden: The Saspar Study. Calcif Tissue Int 112, 647–655 (2023). https://doi.org/10.1007/s00223-023-01074-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-023-01074-3

Keywords

Navigation