Skip to main content

Advertisement

Log in

Mechanical Loading Promotes the Migration of Endogenous Stem Cells and Chondrogenic Differentiation in a Mouse Model of Osteoarthritis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoarthritis (OA) is a major health problem, characterized by progressive cartilage degeneration. Previous works have shown that mechanical loading can alleviate OA symptoms by suppressing catabolic activities. This study evaluated whether mechanical loading can enhance anabolic activities by facilitating the recruitment of stem cells for chondrogenesis. We evaluated cartilage degradation in a mouse model of OA through histology with H&E and safranin O staining. We also evaluated the migration and chondrogenic ability of stem cells using in vitro assays, including immunohistochemistry, immunofluorescence, and Western blot analysis. The result showed that the OA mice that received mechanical loading exhibited resilience to cartilage damage. Compared to the OA group, mechanical loading promoted the expression of Piezo1 and the migration of stem cells was promoted via the SDF-1/CXCR4 axis. Also, the chondrogenic differentiation was enhanced by the upregulation of SOX9, a transcription factor important for chondrogenesis. Collectively, the results revealed that mechanical loading facilitated cartilage repair by promoting the migration and chondrogenic differentiation of endogenous stem cells. This study provided new insights into the loading-driven engagement of endogenous stem cells and the enhancement of anabolic responses for the treatment of OA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. LaTourette A, Kloppenburg M, Richette P (2020) Emerging pharmaceutical therapies for osteoarthritis. Nat Rev Rheumatol 16(12):673–688

    Article  Google Scholar 

  2. Zhang Y, Chen X, Tong Y et al (2020) Development and prospect of intra-articular injection in the treatment of osteoarthritis: a review. J Pain Res 13:1941–1955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wan Y, Li W, Liao Z et al (2020) Selective MMP-13 inhibitors: promising agents for the therapy of osteoarthritis. Curr Med Chem 27(22):3753–3769

    Article  CAS  PubMed  Google Scholar 

  4. Billesberger LM, Fisher KM, Qadri YJ et al (2020) Procedural treatments for knee osteoarthritis: a review of current injectable therapies. Pain Res Manag 2020:3873098

    Article  PubMed  PubMed Central  Google Scholar 

  5. Maheshwer B, Polce EM, Paul K et al (2021) Regenerative potential of mesenchymal stem cells for the treatment of knee osteoarthritis and chondral defects: a systematic review and meta-analysis. Arthroscopy 37(1):362–378

    Article  PubMed  Google Scholar 

  6. Yang Z, Li H, Yuan Z et al (2020) Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater 114:31–52

    Article  CAS  PubMed  Google Scholar 

  7. Luo Z, Jiang L, Xu Y et al (2015) Mechano growth factor (MGF) and transforming growth factor (TGF)-β3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model. Biomaterials 52:463–475

    Article  CAS  PubMed  Google Scholar 

  8. McGonagle D, Baboolal TG, Jones E (2017) Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis. Nat Rev Rheumatol 13(12):719–730

    Article  CAS  PubMed  Google Scholar 

  9. Salinas EY, Aryaei A, Paschos N et al (2020) Shear stress induced by fluid flow produces improvements in tissue-engineered cartilage. Biofabrication 12(4):045010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhao Z, Li Y, Wang M et al (2020) Mechanotransduction pathways in the regulation of cartilage chondrocyte homoeostasis. J Cell Mol Med 24(10):5408–5419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chen L, Huang T, Qiao Y et al (2019) Perspective into the regulation of cell-generated forces toward stem cell migration and differentiation. J Cell Biochem 120(6):8884–8890

    Article  CAS  PubMed  Google Scholar 

  12. Ye W, Guo H, Yang X et al (2020) Pulsed electromagnetic field versus whole body vibration on cartilage and subchondral trabecular bone in mice with knee osteoarthritis. Bioelectromagnetics 41(4):298–307

    Article  PubMed  Google Scholar 

  13. Huwe LW, Sullan GK, Hu JC et al (2017) Using costal chondrocytes to engineer articular cartilage with applications of passive axial compression and bioactive stimuli. Tissue Eng Part A 24(5–6):516–526

    PubMed  Google Scholar 

  14. Antunes BP, Vainieri ML, Alini M et al (2020) Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 105:170–179

    Article  CAS  PubMed  Google Scholar 

  15. Zhang P, Yokota H (2012) Elbow loading promotes longitudinal bone growth of the ulna and the humerus. J Bone Miner Metab 30(1):31–39

    Article  PubMed  Google Scholar 

  16. Zheng W, Ding B, Li X et al (2020) Knee loading repairs osteoporotic osteoarthritis by relieving abnormal remodeling of subchondral bone via Wnt/β-catenin signaling. FASEB J 34(2):3399–3412

    Article  CAS  PubMed  Google Scholar 

  17. Yang S, Liu H, Zhu L et al (2019) Ankle loading ameliorates bone loss from breast cancer-associated bone metastasis. FASEB J 33(10):10742–10752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhang P, Hamamura K, Yokota H et al (2009) Potential applications of pulsating joint loading in sports medicine. Exerc Sport Sci Rev 37(1):52–56

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zhang P, Yokota H (2011) Knee loading stimulates healing of mouse bone wounds in a femur neck. Bone 49(4):867–872

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhang P, Sun Q, Turner CH et al (2007) Knee loading accelerates bone healing in mice. J Bone Miner Res 22(12):1979–1987

    Article  PubMed  Google Scholar 

  21. Liu D, Li X, Li J et al (2015) Knee loading protects against osteonecrosis of the femoral head by enhancing vessel remodeling and bone healing. Bone 81:620–631

    Article  PubMed  PubMed Central  Google Scholar 

  22. Zheng W, Li X, Liu D et al (2019) Mechanical loading mitigates osteoarthritis symptoms by regulating endoplasmic reticulum stress and autophagy. FASEB J 33(3):4077–4088

    Article  CAS  PubMed  Google Scholar 

  23. Li X, Yang J, Liu D et al (2016) Knee loading inhibits osteoclast lineage in a mouse model of osteoarthritis. Sci Rep 6:24668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wang HN, Huang YC, Ni GX (2020) Mechanotransduction of stem cells for tendon repair. World J Stem Cells 12(9):952–965

    Article  PubMed  PubMed Central  Google Scholar 

  25. Martino F, Perestrelo AR, Vinarský V et al (2018) Cellular mechanotransduction: from tension to function. Front Physiol 9:824

    Article  PubMed  PubMed Central  Google Scholar 

  26. Xu X, Liu S, Liu H et al (2021) Piezo channels: awesome mechanosensitive structures in cellular mechanotransduction and their role in bone. Int J Mol Sci 22(12):6429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lewis AH, Grandl J (2020) Inactivation kinetics and mechanical gating of Piezo1 ion channels depend on subdomains within the cap. Cell Rep 30(3):870–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang L, Liu X, Gao L et al (2020) Activation of Piezo1 by ultrasonic stimulation and its effect on the permeability of human umbilical vein endothelial cells. Biomed Pharmacother 131:110796

    Article  CAS  PubMed  Google Scholar 

  29. Sun Y, Leng P, Li D et al (2020) Mechanism of abnormal chondrocyte proliferation induced by Piezo1-siRNA exposed to mechanical stretch. Biomed Res Int 2020:8538463

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nam D, Park A, Dubon MJ et al (2020) Coordinated regulation of mesenchymal stem cell migration by various chemotactic stimuli. Int J Mol Sci 21(22):8561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tatara AM, Kretlow JD, Spicer PP et al (2015) Autologously generated tissue-engineered bone flaps for reconstruction of large mandibular defects in an ovine model. Tissue Eng Part A 21(9–10):1520–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li X, Wei Z, Lv H et al (2019) Iron oxide nanoparticles promote the migration of mesenchymal stem cells to injury sites. Int J Nanomedicine 14:573–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Barhanpurkar-Naik A, Mhaske ST, Pote ST et al (2017) Interleukin-3 enhances the migration of human mesenchymal stem cells by regulating expression of CXCR4. Stem Cell Res Ther 8(1):168

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang Y, Sun X, Lv J et al (2017) Stromal cell-derived factor-1 accelerates cartilage defect repairing by recruiting bone marrow mesenchymal stem cells and promoting chondrogenic differentiation. Tissue Eng Part A 23(19–20):1160–1168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kuang B, Zeng Z, Qin Q (2019) Biomechanically stimulated chondrocytes promote osteoclastic bone resorption in the mandibular condyle. Arch Oral Biol 98:248–257

    Article  CAS  PubMed  Google Scholar 

  36. Zhang Y, Li X, Li J et al (2022) Knee loading enhances the migration of adipose-derived stem cells to the osteoarthritic sites through the SDF-1/CXCR4 regulatory axis. Calcif Tissue Int 111(2):171–184

    Article  CAS  PubMed  Google Scholar 

  37. Almalki SG, Agrawal DK (2016) Key transcription factors in the differentiation of mesenchymal stem cells. Differentiation 92(1–2):41–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Horner CB, Hirota K, Liu J et al (2018) Magnitude-dependent and inversely-related osteogenic/chondrogenic differentiation of human mesenchymal stem cells under dynamic compressive strain. J Tissue Eng Regen Med 12(2):e637–e647

    Article  CAS  PubMed  Google Scholar 

  39. Berenbaum F, Walker C (2020) Osteoarthritis and inflammation: a serious disease with overlapping phenotypic patterns. Postgrad Med 132(4):377–384

    Article  CAS  PubMed  Google Scholar 

  40. Costello CA, Hu T, Liu M et al (2020) Metabolomics signature for non-responders to total joint replacement surgery in primary osteoarthritis patients: the newfoundland osteoarthritis study. J Orthop Res 38(4):793–802

    Article  CAS  PubMed  Google Scholar 

  41. Davatchi F, Sadeghi AB, Mohyeddin M et al (2016) Mesenchymal stem cell therapy for knee osteoarthritis: 5 years follow-up of three patients. Int J Rheum Dis 19(3):219–225

    Article  PubMed  Google Scholar 

  42. Lu J, Shen X, Sun X et al (2018) Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration. Theranostics 8(18):5039–5058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Im GI (2016) Endogenous cartilage repair by recruitment of stem cells. Tissue Eng Part B Rev 22(2):160–171

    Article  PubMed  Google Scholar 

  44. Bourzac C, Bensidhoum M, Pallu S et al (2019) Use of adult mesenchymal stromal cells in tissue repair: impact of physical exercise. Am J Physiol Cell Physiol 317(4):C642–C654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Xiang X, Liu H, Wang L et al (2020) Ultrasound combined with SDF-1α chemotactic microbubbles promotes stem cell homing in an osteoarthritis model. J Cell Mol Med 24(18):10816–10829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhao Z, Wang Y, Wang Q et al (2021) Radial extracorporeal shockwave promotes subchondral bone stem/progenitor cell self-renewal by activating YAP/TAZ and facilitates cartilage repair in vivo. Stem Cell Res Ther 12(1):19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tian GE, Zhou JT, Liu XJ et al (2019) Mechanoresponse of stem cells for vascular repair. World J Stem Cells 11(12):1104–1114

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lee W, Leddy HA, Chen Y et al (2014) Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. Proc Natl Acad Sci U S A 111(47):E5114-5122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mousawi F, Peng H, Li J et al (2020) Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells 38(3):410–421

    Article  CAS  PubMed  Google Scholar 

  50. Sugimoto A, Miyazaki A, Kawarabayashi K et al (2017) Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep 7(1):17696

    Article  PubMed  PubMed Central  Google Scholar 

  51. Shang F, Yu Y, Liu S et al (2020) Advancing application of mesenchymal stem cell-based bone tissue regeneration. Bioact Mater 6(3):666–683

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yuan L, Sakamoto N, Song G et al (2012) Low-level shear stress induces human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via MAPK signaling pathways. Stem Cells Dev 22(17):2384–2393

    Article  Google Scholar 

  53. Zhang X, Wu S, Zhu Y et al (2021) Exploiting joint-resident stem cells by exogenous SOX9 for cartilage regeneration for therapy of osteoarthritis. Front Med 8:622609

    Article  Google Scholar 

  54. Jang Y, Jung H, Nam Y et al (2016) Centrifugal gravity-induced BMP4 induces chondrogenic differentiation of adipose-derived stem cells via SOX9 upregulation. Stem Cell Res Ther 7(1):184

    Article  PubMed  PubMed Central  Google Scholar 

  55. Carroll SF, Buckley CT, Kelly DJ (2014) Cyclic hydrostatic pressure promotes a stable cartilage phenotype and enhances the functional development of cartilaginous grafts engineered using multipotent stromal cells isolated from bone marrow and infrapatellar fat pad. J Biomech 47(9):2115–2121

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (81772405 and 81572100 to P. Zhang; 81601863 to X. Li).

Funding

National Natural Science Foundation of China,81772405,Ping Zhang,81572100,Ping Zhang,81601863,Xinle Li

Author information

Authors and Affiliations

Authors

Contributions

PZ, JL, and XW designed research; XW, JL, RK and XL conducted research; DL, LZ, LY, RK and XW collected the data; JL, XW, XL, RK, LY, HY, and PZ analyzed the data; PZ JL, and XW wrote the manuscript; PZ approved the final manuscript as submitted; PZ accepted responsibility for the integrity of data analysis.

Corresponding author

Correspondence to Ping Zhang.

Ethics declarations

Competing interest

Jie Li, Xiaoyu Wang, Xinle Li, Daquan Liu, Lidong Zhai, Xuetong Wang, Ran Kang, Hiroki Yokota, Lei Yang, Ping Zhang declare that they have no competing interests.

Resaerch Involving Human and Animal Rights

All experiments were carried out according to the National Institutes of Health Guide for Care and Use of Laboratory Animals and were approved by the Ethics Committee of Tianjin Medical University. No human studies were performed in the course of these experiments.

Informed Consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, X., Li, X. et al. Mechanical Loading Promotes the Migration of Endogenous Stem Cells and Chondrogenic Differentiation in a Mouse Model of Osteoarthritis. Calcif Tissue Int 112, 363–376 (2023). https://doi.org/10.1007/s00223-022-01052-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01052-1

Keywords

Navigation