Skip to main content

Advertisement

Log in

A Novel Synonymous Variant of PHEX in a Patient with X-Linked Hypophosphatemia

  • Case Reports
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

X-linked dominant hypophosphatemia (XLH), the most common form of hereditary hypophosphatemic rickets/osteomalacia, is caused by loss-of-function phosphate-regulating endopeptidase homolog X-linked gene (PHEX) variants. However, synonymous PHEX variants are rare in XLH. We report a 7-year-old boy with hypophosphatemia, short stature, and lower limb deformity. Whole-exome sequencing, reverse transcription–polymerase chain reaction, and Sanger sequencing were performed to identify the pathogenicity of the variant. A novel synonymous PHEX variant (NM_000444.4:c.1530 C>T, p.Arg510Arg) was detected in the proband. Further analysis revealed a 58-bp deletion at the 5′ site of exon 14 during splicing. This study extends the genetic spectrum of XLH and confirms the rarity and significance of synonymous PHEX variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

All data generated were included in this article.

References

  1. Francis F, Hennig S, Korn B, Reinhardt R, De Jong P, Poustka A, Lehrach H, Rowe PS, Goulding JN, Summerfield T, Mountford R (1995) A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. The HYP Consortium. Nat Genet 11:130–136. https://doi.org/10.1038/ng1095-130

    Article  CAS  Google Scholar 

  2. Liao H, Zhu HM, Liu HQ, Li LP, Liu SL, Wang H (2018) Two novel variants of the PHEX gene in patients with X-linked dominant hypophosphatemic rickets and prenatal diagnosis for fetuses in these families. Int J Mol Med 41:2012–2020. https://doi.org/10.3892/ijmm.2018.3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carpenter TO, Imel EA, Holm IA, Jan de Beur SM, Insogna KL (2011) A clinician’s guide to X-linked hypophosphatemia. J Bone Miner Res 26:1381–1388. https://doi.org/10.1002/jbmr.340

    Article  PubMed  Google Scholar 

  4. Endo I, Fukumoto S, Ozono K, Namba N, Inoue D, Okazaki R, Yamauchi M, Sugimoto T, Minagawa M, Michigami T, Nagai M, Matsumoto T (2015) Nationwide survey of fibroblast growth factor 23 (FGF23)-related hypophosphatemic diseases in Japan: prevalence, biochemical data and treatment. Endocr J 62:811–816. https://doi.org/10.1507/endocrj.EJ15-0275

    Article  CAS  PubMed  Google Scholar 

  5. Beck-Nielsen SS, Brock-Jacobsen B, Gram J, Brixen K, Jensen TK (2009) Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 160:491–497. https://doi.org/10.1530/eje-08-0818

    Article  CAS  PubMed  Google Scholar 

  6. Rafaelsen S, Johansson S, Ræder H, Bjerknes R (2016) Hereditary hypophosphatemia in Norway: a retrospective population-based study of genotypes, phenotypes, and treatment complications. Eur J Endocrinol 174:125–136. https://doi.org/10.1530/eje-15-0515

    Article  CAS  PubMed  Google Scholar 

  7. Hawley S, Shaw NJ, Delmestri A, Prieto-Alhambra D, Cooper C, Pinedo-Villanueva R, Javaid MK (2020) Prevalence and mortality of individuals with X-linked hypophosphatemia: a United Kingdom real-world data analysis. J Clin Endocrinol Metab 105:e871-878. https://doi.org/10.1210/clinem/dgz203

    Article  Google Scholar 

  8. Francis F, Strom TM, Hennig S, Böddrich A, Lorenz B, Brandau O, Mohnike KL, Cagnoli M, Steffens C, Klages S, Borzym K, Pohl T, Oudet C, Econs MJ, Rowe PS, Reinhardt R, Meitinger T, Lehrach H (1997) Genomic organization of the human PEX gene mutated in X-linked dominant hypophosphatemic rickets. Genome Res 7:573–585. https://doi.org/10.1101/gr.7.6.573

    Article  CAS  PubMed  Google Scholar 

  9. Bowe AE, Finnegan R, Jan de Beur SM, Cho J, Levine MA, Kumar R, Schiavi SC (2001) FGF-23 inhibits renal tubular phosphate transport and is a PHEX substrate. Biochem Biophys Res Commun 284:977–981. https://doi.org/10.1006/bbrc.2001.5084

    Article  CAS  PubMed  Google Scholar 

  10. White KE, Evans WE, O’Riordan JLH, Speer MC, Econs MJ, Lorenz-Depiereux B, Grabowski M, Meitinger T, Strom TM (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345–348. https://doi.org/10.1038/81664

    Article  CAS  Google Scholar 

  11. Shimada T, Kakitani M, Yamazaki Y, Hasegawa H, Takeuchi Y, Fujita T, Fukumoto S, Tomizuka K, Yamashita T (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113:561–568. https://doi.org/10.1172/jci19081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Huang X, Jiang Y, Xia W (2013) FGF23 and phosphate wasting disorders. Bone Res 1:120–132. https://doi.org/10.4248/br201302002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lecoq AL, Chaumet-Riffaud P, Blanchard A, Dupeux M, Rothenbuhler A, Lambert B, Durand E, Boros E, Briot K, Silve C, Francou B, Piketty M, Chanson P, Brailly-Tabard S, Linglart A, Kamenický P (2020) Hyperparathyroidism in patients with X-linked hypophosphatemia. J Bone Miner Res 35:1263–1273. https://doi.org/10.1002/jbmr.3992

    Article  CAS  PubMed  Google Scholar 

  14. Haffner D, Emma F, Eastwood DM, Duplan MB, Bacchetta J, Schnabel D, Wicart P, Bockenhauer D, Santos F, Levtchenko E, Harvengt P, Kirchhoff M, Di Rocco F, Chaussain C, Brandi ML, Savendahl L, Briot K, Kamenicky P, Rejnmark L, Linglart A (2019) Clinical practice recommendations for the diagnosis and management of X-linked hypophosphataemia. Nat Rev Nephrol 15:435–455. https://doi.org/10.1038/s41581-019-0152-5

    Article  PubMed  PubMed Central  Google Scholar 

  15. Zhang C, Zhao Z, Sun Y, Xu L, JiaJue R, Cui L, Pang Q, Jiang Y, Li M, Wang O, He X, He S, Nie M, Xing X, Meng X, Zhou X, Yan L, Kaplan JM, Insogna KL, Xia W (2019) Clinical and genetic analysis in a large Chinese cohort of patients with X-linked hypophosphatemia. Bone 121:212–220. https://doi.org/10.1016/j.bone.2019.01.021

    Article  CAS  PubMed  Google Scholar 

  16. Cartegni L, Chew SL, Krainer AR (2002) Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nat Rev Genet 3:285–298. https://doi.org/10.1038/nrg775

    Article  CAS  PubMed  Google Scholar 

  17. Christie PT, Harding B, Nesbit MA, Whyte MP, Thakker RV (2001) X-linked hypophosphatemia attributable to pseudoexons of the PHEX gene. J Clin Endocrinol Metab 86:3840–3844. https://doi.org/10.1210/jcem.86.8.7730

    Article  CAS  PubMed  Google Scholar 

  18. BinEssa HA, Zou M, Al-Enezi AF, Alomrani B, Al-Faham MSA, Al-Rijjal RA, Meyer BF, Shi Y (2019) Functional analysis of 22 splice-site mutations in the PHEX, the causative gene in X-linked dominant hypophosphatemic rickets. Bone 125:186–193. https://doi.org/10.1016/j.bone.2019.05.017

    Article  CAS  PubMed  Google Scholar 

  19. Li H, Ji CY, Zong XN, Zhang YQ (2009) Height and weight standardized growth charts for Chinese children and adolescents aged 0 to 18 years. Zhonghua Er Ke Za Zhi 47:487–492

    PubMed  Google Scholar 

  20. Wai HA, Lord J, Lyon M, Gunning A, Kelly H, Cibin P, Seaby EG, Spiers-Fitzgerald K, Lye J, Ellard S, Thomas NS, Bunyan DJ, Douglas AGL, Baralle D (2020) Blood RNA analysis can increase clinical diagnostic rate and resolve variants of uncertain significance. Genet Med 22:1005–1014. https://doi.org/10.1038/s41436-020-0766-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Rowlands C, Thomas HB, Lord J, Wai HA, Arno G, Beaman G, Sergouniotis P, Gomes-Silva B, Campbell C, Gossan N, Hardcastle C, Webb K, O’Callaghan C, Hirst RA, Ramsden S, Jones E, Clayton-Smith J, Webster AR, Douglas AGL, O’Keefe RT, Newman WG, Baralle D, Black GCM, Ellingford JM (2021) Comparison of in silico strategies to prioritize rare genomic variants impacting RNA splicing for the diagnosis of genomic disorders. Sci Rep 11:20607. https://doi.org/10.1038/s41598-021-99747-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, Knowles D, Li YI, Kosmicki JA, Arbelaez J, Cui W, Schwartz GB, Chow ED, Kanterakis E, Gao H, Kia A, Batzoglou S, Sanders SJ, Farh KK (2019) Predicting splicing from primary sequence with deep learning. Cell 176:535-548.e524. https://doi.org/10.1016/j.cell.2018.12.015

    Article  CAS  PubMed  Google Scholar 

  23. Shen H, Li J, Zhang J, Xu C, Jiang Y, Wu Z, Zhao F, Liao L, Chen J, Lin Y, Tian Q, Papasian CJ, Deng HW (2013) Comprehensive characterization of human genome variation by high coverage whole-genome sequencing of forty four Caucasians. PLoS ONE 8:e59494. https://doi.org/10.1371/journal.pone.0059494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691. https://doi.org/10.1038/nrg3051

    Article  CAS  PubMed  Google Scholar 

  25. Zeng Z, Aptekmann AA, Bromberg Y (2021) Decoding the effects of synonymous variants. Nucleic Acids Res 49:12673–12691. https://doi.org/10.1093/nar/gkab1159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zeng Z, Bromberg Y (2019) Predicting functional effects of synonymous variants: a systematic review and perspectives. Front Genet 10:914. https://doi.org/10.3389/fgene.2019.00914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Naito T (2019) Predicting the impact of single nucleotide variants on splicing via sequence-based deep neural networks and genomic features. Hum Mutat 40:1261–1269. https://doi.org/10.1002/humu.23794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pritchard CC, Smith C, Marushchak T, Koehler K, Holmes H, Raskind W, Walsh T, Bennett RL (2013) A mosaic PTEN mutation causing Cowden syndrome identified by deep sequencing. Genet Med 15:1004–1007. https://doi.org/10.1038/gim.2013.51

    Article  CAS  PubMed  Google Scholar 

  29. Qin L, Wang J, Tian X, Yu H, Truong C, Mitchell JJ, Wierenga KJ, Craigen WJ, Zhang VW, Wong LC (2016) Detection and quantification of mosaic mutations in disease genes by next-generation sequencing. J Mol Diagn 18:446–453. https://doi.org/10.1016/j.jmoldx.2016.01.002

    Article  CAS  PubMed  Google Scholar 

  30. Saito T, Nishii Y, Yasuda T, Ito N, Suzuki H, Igarashi T, Fukumoto S, Fujita T (2009) Familial hypophosphatemic rickets caused by a large deletion in PHEX gene. Eur J Endocrinol 161:647–651. https://doi.org/10.1530/eje-09-0261

    Article  CAS  PubMed  Google Scholar 

  31. Clausmeyer S, Hesse V, Clemens PC, Engelbach M, Kreuzer M, Becker-Rose P, Spital H, Schulze E, Raue F (2009) Mutational analysis of the PHEX gene: novel point mutations and detection of large deletions by MLPA in patients with X-linked hypophosphatemic rickets. Calcif Tissue Int 85:211–220. https://doi.org/10.1007/s00223-009-9260-8

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by CAMS Innovation Fund for Medical Sciences (Grant Nos. 2021-I2M-1-002 and 2020-I2M-C&T-B-016), the National Key R&D Program of China (Grant No. 2021YFC2501700), and the National Natural Science Foundation of China (Grant No. 81970757).

Author information

Authors and Affiliations

Authors

Contributions

WX and XM designed the study and prepared the first draft of the paper. WX is guarantor. XM, QP, and QZ contributed to the experimental work. WX, YJ, OW, ML, and XX revised the paper critically for intellectual content. All authors approved the final version. XM and WX agree to be accountable for the work and to ensure that any questions relating to the accuracy and integrity of the paper are investigated and properly resolved.

Corresponding author

Correspondence to Weibo Xia.

Ethics declarations

Conflict of interest

Xiaosen Ma, Qianqian Pang, Qi Zhang, Yan Jiang, Ou Wang, Mei Li, Xiaoping Xing, and Weibo Xia declare no conflict of interest.

Human and Animal Rights

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of PUMCH (JS-1689).

Informed Consent

Written informed consent was obtained from the parents.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 9 kb)

Supplementary file2 (XLSX 881 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Pang, Q., Zhang, Q. et al. A Novel Synonymous Variant of PHEX in a Patient with X-Linked Hypophosphatemia. Calcif Tissue Int 111, 634–640 (2022). https://doi.org/10.1007/s00223-022-01003-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-01003-w

Keywords

Navigation