Skip to main content
Log in

An Update on Animal Models of Osteogenesis Imperfecta

  • Review Article
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteogenesis imperfecta (OI) is a heterogeneous disorder characterized by bone fragility, multiple fractures, bone deformity, and short stature. In recent years, the application of next generation sequencing has triggered the discovery of many new genetic causes for OI. Until now, more than 25 genetic causes of OI and closely related disorders have been identified. However, the mechanisms of many genes on skeletal fragility in OI are not entirely clear. Animal models of OI could help to understand the cellular, signaling, and metabolic mechanisms contributing to the disease, and how targeting these pathways can provide therapeutic targets. To date, a lot of animal models, mainly mice and zebrafish, have been described with defects in 19 OI-associated genes. In this review, we summarize the known genetic causes and animal models that recapitulate OI with a main focus on engineered mouse and zebrafish models. Additionally, we briefly discuss domestic animals with naturally occurring OI phenotypes. Knowledge of the specific molecular basis of OI will advance clinical diagnosis and potentially stimulate targeted therapeutic approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Marom R, Rabenhorst BM, Morello R (2020) Osteogenesis imperfecta: an update on clinical features and therapies. Eur J Endocrinol 183(4):R95–R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tournis S, Dede AD (2018) Osteogenesis imperfecta—a clinical update. Metabolism 80:27–37

    Article  CAS  PubMed  Google Scholar 

  3. Marini JC, Forlino A, Bächinger HP, Bishop NJ, Byers PH, Paepe A, Fassier F, Fratzl-Zelman N, Kozloff KM, Krakow D, Montpetit K, Semler O (2017) Osteogenesis imperfecta. Nat Rev Dis Primers 3:17052

    Article  PubMed  Google Scholar 

  4. Forlino A, Marini JC (2016) Osteogenesis imperfecta. Lancet 387(10028):1657–1671

    Article  CAS  PubMed  Google Scholar 

  5. Chetty M, Roomaney IA, Beighton P (2021) The evolution of the nosology of osteogenesis imperfecta. Clin Genet 99(1):42–52

    Article  CAS  PubMed  Google Scholar 

  6. Sillence DO, Senn A, Danks DM (1979) Genetic heterogeneity in osteogenesis imperfecta. J Med Genet 16(2):101–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Dijk FS, Semler O, Etich J, Köhler A, Jimenez-Estrada JA, Bravenboer N, Claeys L, Riesebos E, Gegic S, Piersma SR, Jimenez CR, Waisfisz Q, Flores CL, Nevado J, Harsevoort AJ, Janus GJM, Franken AAM, van der Sar AM, Meijers-Heijboer H, Heath KE, Lapunzina P, Nikkels PGJ, Santen GWE, Nüchel J, Plomann M, Wagener R, Rehberg M, Hoyer-Kuhn H, Eekhoff EMW, Pals G, Mörgelin M, Newstead S, Wilson BT, Ruiz-Perez VL, Maugeri A, Netzer C, Zaucke F, Micha D (2020) Interaction between KDELR2 and HSP47 as a key determinant in osteogenesis imperfecta caused by Bi-allelic variants in KDELR2. Am J Hum Genet 107(5):989–999

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Van Dijk FS, Sillence DO (2014) Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A 164A(6):1470–1481

    Article  PubMed  Google Scholar 

  9. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Sillence D, Spranger J, Unger S, Zabel B, Superti-Furga A (2011) Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet A 155A(5):943–968

    Article  PubMed  CAS  Google Scholar 

  10. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, Nishimura G, Robertson S, Sangiorgi L, Savarirayan R, Sillence D, Superti-Furga A, Unger S, Warman ML (2019) Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet A 179(12):2393–2419

    Article  PubMed  Google Scholar 

  11. Lim J, Grafe I, Alexander S, Lee B (2017) Genetic causes and mechanisms of Osteogenesis Imperfecta. Bone 102:40–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. O’Brien CA, Morello R (2018) Modeling rare bone diseases in animals. Curr Osteoporos Rep 16(4):458–465

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rossi V, Lee B, Marom R (2019) Osteogenesis imperfecta: advancements in genetics and treatment. Curr Opin Pediatr 31(6):708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enderli TA, Burtch SR, Templet JN, Carriero A (2016) Animal models of osteogenesis imperfecta: applications in clinical research. Orthop Res Rev 8:41–55

    PubMed  PubMed Central  Google Scholar 

  15. Elefteriou F, Yang X (2011) Genetic mouse models for bone studies–strengths and limitations. Bone 49(6):1242–1254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Campbell BG, Wootton JA, Macleod JN, Minor RR (2001) Canine COL1A2 mutation resulting in C-terminal truncation of pro-alpha2(I) and severe osteogenesis imperfecta. J Bone Miner Res 16(6):1147–1153

    Article  CAS  PubMed  Google Scholar 

  17. Dietrich K, Fiedler IA, Kurzyukova A, López-Delgado AC, McGowan LM, Geurtzen K, Hammond CL, Busse B, Knopf F (2021) Skeletal biology and disease modeling in zebrafish. J Bone Miner Res 36(3):436–458

    Article  CAS  PubMed  Google Scholar 

  18. Marí-Beffa M, Mesa-Román AB, Duran I (2021) Zebrafish models for human skeletal disorders. Front Genet 12:675331

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Bergen DJM, Kague E, Hammond CL (2019) Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Front Endocrinol (Lausanne) 10:6

    Article  Google Scholar 

  20. Tonelli F, Bek JW, Besio R, De Clercq A, Leoni L, Salmon P, Coucke PJ, Willaert A, Forlino A (2020) Zebrafish: a resourceful vertebrate model to investigate skeletal disorders. Front Endocrinol (Lausanne) 11:489

    Article  PubMed Central  Google Scholar 

  21. Gistelinck C, Gioia R, Gagliardi A, Tonelli F, Marchese L, Bianchi L, Landi C, Bini L, Huysseune A, Witten PE, Staes A, Gevaert K, De Rocker N, Menten B, Malfait F, Leikin S, Carra S, Tenni R, Rossi A, De Paepe A, Coucke P, Willaert A, Forlino A (2016) Zebrafish collagen Type I: molecular and biochemical characterization of the major structural protein in bone and skin. Sci Rep 6:21540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gistelinck C, Kwon RY, Malfait F, Symoens S, Harris MP, Henke K, Hawkins MB, Fisher S, Sips P, Guillemyn B, Bek JW, Vermassen P, De Saffel H, Witten PE, Weis M, De Paepe A, Eyre DR, Willaert A, Coucke PJ (2018) Zebrafish type I collagen mutants faithfully recapitulate human type I collagenopathies. Proc Natl Acad Sci USA 115(34):E8037–E8046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Mienaltowski MJ, Gonzales NL, Beall JM, Pechanec MY (2021) Basic structure, physiology, and biochemistry of connective tissues and extracellular matrix collagens. Adv Exp Med Biol 1348:5–43

    Article  PubMed  Google Scholar 

  24. Schnieke A, Harbers K, Jaenisch R (1983) Embryonic lethal mutation in mice induced by retrovirus insertion into the alpha 1(I) collagen gene. Nature 304(5924):315–320

    Article  CAS  PubMed  Google Scholar 

  25. Bonadio J, Saunders TL, Tsai E, Goldstein SA, Morris-Wiman J, Brinkley L, Dolan DF, Altschuler RA, Hawkins JE Jr, Bateman JF et al (1990) Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 87(18):7145–7149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hartung S, Jaenisch R, Breindl M (1986) Retrovirus insertion inactivates mouse alpha 1(I) collagen gene by blocking initiation of transcription. Nature 320(6060):365–367

    Article  CAS  PubMed  Google Scholar 

  27. Bonadio J, Jepsen KJ, Mansoura MK, Jaenisch R, Kuhn JL, Goldstein SA (1993) A murine skeletal adaptation that significantly increases cortical bone mechanical properties. Implications for human skeletal fragility. J Clin Invest 92(4):1697–1705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Stacey A, Bateman J, Choi T, Mascara T, Cole W, Jaenisch R (1988) Perinatal lethal osteogenesis imperfecta in transgenic mice bearing an engineered mutant pro-alpha 1(I) collagen gene. Nature 332(6160):131–136

    Article  CAS  PubMed  Google Scholar 

  29. Pereira R, Khillan JS, Helminen HJ, Hume EL, Prockop DJ (1993) Transgenic mice expressing a partially deleted gene for type I procollagen (COL1A1) A breeding line with a phenotype of spontaneous fractures and decreased bone collagen and mineral. J Clin Invest 91(2):709–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pereira RF, O’Hara MD, Laptev AV, Halford KW, Pollard MD, Class R, Simon D, Livezey K, Prockop DJ (1998) Marrow stromal cells as a source of progenitor cells for nonhematopoietic tissues in transgenic mice with a phenotype of osteogenesis imperfecta. Proc Natl Acad Sci U S A 95(3):1142–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Forlino A, Porter FD, Lee EJ, Westphal H, Marini JC (1999) Use of the Cre/lox recombination system to develop a non-lethal knock-in murine model for osteogenesis imperfecta with an alpha1(I) G349C substitution. Variability in phenotype in BrtlIV mice. J Biol Chem 274(53):37923–37931

    Article  CAS  PubMed  Google Scholar 

  32. Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, Marini JC, Goldstein SA (2004) Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res 19(4):614–622

    Article  PubMed  Google Scholar 

  33. Kozloff KM, Carden A, Bergwitz C, Forlino A, Uveges TE, Morris MD, Marini JC, Goldstein SA (2004) Brittle IV mouse model for osteogenesis imperfecta IV demonstrates postpubertal adaptations to improve whole bone strength. J Bone Miner Res 19(4):614–622Uveges TE, Kozloff KM, Ty JM, Ledgard F, Raggio CL, Gronowicz G, Goldstein SA, Marini JC (2009) Alendronate treatment of the brtl osteogenesis imperfecta mouse improves femoral geometry and load response before fracture but decreases predicted material properties and has detrimental effects on osteoblasts and bone formation. J Bone Miner Res 24(5):849–59

  34. Sinder BP, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2014) Rapidly growing Brtl/+ mouse model of osteogenesis imperfecta improves bone mass and strength with sclerostin antibody treatment. Bone 71:115–123

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Sinder BP, White LE, Salemi JD, Ominsky MS, Caird MS, Marini JC, Kozloff KM (2014) Adult Brtl/+ mouse model of osteogenesis imperfecta demonstrates anabolic response to sclerostin antibody treatment with increased bone mass and strength. Osteoporos Int 25(8):2097–2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Panaroni C, Gioia R, Lupi A, Besio R, Goldstein SA, Kreider J, Leikin S, Vera JC, Mertz EL, Perilli E, Baruffaldi F, Villa I, Farina A, Casasco M, Cetta G, Rossi A, Frattini A, Marini JC, Vezzoni P, Forlino A (2009) In utero transplantation of adult bone marrow decreases perinatal lethality and rescues the bone phenotype in the knockin murine model for classical, dominant osteogenesis imperfecta. Blood 114(2):459–468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lisse TS, Thiele F, Fuchs H, Hans W, Przemeck GK, Abe K, Rathkolb B, Quintanilla-Martinez L, Hoelzlwimmer G, Helfrich M, Wolf E, Ralston SH, Hrabé de Angelis M (2008) ER stress-mediated apoptosis in a new mouse model of osteogenesis imperfecta. PLoS Genet 4(2):e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Thiele F, Cohrs CM, Flor A, Lisse TS, Przemeck GK, Horsch M, Schrewe A, Gailus-Durner V, Ivandic B, Katus HA, Wurst W, Reisenberg C, Chaney H, Fuchs H, Hans W, Beckers J, Marini JC, Hrabé de Angelis M (2012) Cardiopulmonary dysfunction in the Osteogenesis imperfecta mouse model Aga2 and human patients are caused by bone-independent mechanisms. Hum Mol Genet 21(16):3535–3545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen F, Guo R, Itoh S, Moreno L, Rosenthal E, Zappitelli T, Zirngibl RA, Flenniken A, Cole W, Grynpas M, Osborne LR, Vogel W, Adamson L, Rossant J, Aubin JE (2014) First mouse model for combined osteogenesis imperfecta and Ehlers-Danlos syndrome. J Bone Miner Res 29(6):1412–1423

    Article  CAS  PubMed  Google Scholar 

  40. Tauer JT, Abdullah S, Rauch F (2019) Effect of Anti-TGF-β treatment in a mouse model of severe osteogenesis imperfecta. J Bone Miner Res 34(2):207–214

    Article  CAS  PubMed  Google Scholar 

  41. Roschger A, Roschger P, Keplingter P, Klaushofer K, Abdullah S, Kneissel M, Rauch F (2014) Effect of sclerostin antibody treatment in a mouse model of severe osteogenesis imperfecta. Bone 66:182–188

    Article  CAS  PubMed  Google Scholar 

  42. Tabeta K, Du X, Arimatsu K, Yokoji M, Takahashi N, Amizuka N, Hasegawa T, Crozat K, Maekawa T, Miyauchi S, Matsuda Y, Ida T, Kaku M, Hoebe K, Ohno K, Yoshie H, Yamazaki K, Moresco EMY, Beutler B (2017) An ENU-induced splice site mutation of mouse Col1a1 causing recessive osteogenesis imperfecta and revealing a novel splicing rescue. Sci Rep 7(1):11717

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Liu Y, Wang J, Liu S, Kuang M, Jing Y, Zhao Y, Wang Z, Li G (2019) A novel transgenic murine model with persistently brittle bones simulating osteogenesis imperfecta type I. Bone 127:646–655

    Article  CAS  PubMed  Google Scholar 

  44. Campbell BG, Wootton JA, MacLeod JN, Minor RR (2000) Sequence of normal canine COL1A1 cDNA and identification of a heterozygous alpha1(I) collagen Gly208Ala mutation in a severe case of canine osteogenesis imperfecta. Arch Biochem Biophys 384(1):37–46

    Article  CAS  PubMed  Google Scholar 

  45. Daley E, Streeten EA, Sorkin JD, Kuznetsova N, Shapses SA, Carleton SM, Shuldiner AR, Marini JC, Phillips CL, Goldstein SA, Leikin S, McBride DJ Jr (2010) Variable bone fragility associated with an Amish COL1A2 variant and a knock-in mouse model. J Bone Miner Res 25(2):247–261

    Article  CAS  PubMed  Google Scholar 

  46. Masci M, Wang M, Imbert L, Barnes AM, Spevak L, Lukashova L, Huang Y, Ma Y, Marini JC, Jacobsen CM, Warman ML, Boskey AL (2016) Bone mineral properties in growing Col1a2(+/G610C) mice, an animal model of osteogenesis imperfecta. Bone 87:120–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lee LR, Holman AE, Li X, Vasiljevski ER, O’Donohue AK, Cheng TL, Little DG, Schindeler A, Biggin A, Munns CF (2022) Combination treatment with growth hormone and zoledronic acid in a mouse model of Osteogenesis imperfecta. Bone 159:116378

    Article  CAS  PubMed  Google Scholar 

  48. Little DG, Peacock L, Mikulec K, Kneissel M, Kramer I, Cheng TL, Schindeler A, Munns C (2017) Combination sclerostin antibody and zoledronic acid treatment outperforms either treatment alone in a mouse model of osteogenesis imperfecta. Bone 101:96–103

    Article  CAS  PubMed  Google Scholar 

  49. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, Bertin T, Munivez E, Chen Y, Dawson B, Ishikawa Y, Weis MA, Sampath TK, Ambrose C, Eyre D, Bächinger HP, Lee B (2014) Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20(6):670–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lee LR, Peacock L, Ginn SL, Cantrill LC, Cheng TL, Little DG, Munns CF, Schindeler A (2019) Bone marrow transplantation for treatment of the Col1a2+/G610C osteogenesis imperfecta mouse model. Calcif Tissue Int 104(4):426–436

    Article  CAS  PubMed  Google Scholar 

  51. Phillips CL, Bradley DA, Schlotzhauer CL, Bergfeld M, Libreros-Minotta C, Gawenis LR, Morris JS, Clarke LL, Hillman LS (2000) Oim mice exhibit altered femur and incisor mineral composition and decreased bone mineral density. Bone 27(2):219–226

    Article  CAS  PubMed  Google Scholar 

  52. Carriero A, Zimmermann EA, Paluszny A, Tang SY, Bale H, Busse B, Alliston T, Kazakia G, Ritchie RO, Shefelbine SJ (2014) How tough is brittle bone? Investigating osteogenesis imperfecta in mouse bone. J Bone Miner Res 29(6):1392–1401

    Article  CAS  PubMed  Google Scholar 

  53. Carriero A, Doube M, Vogt M, Busse B, Zustin J, Levchuk A, Schneider P, Müller R, Shefelbine SJ (2014) Altered lacunar and vascular porosity in osteogenesis imperfecta mouse bone as revealed by synchrotron tomography contributes to bone fragility. Bone 61:116–124

    Article  CAS  PubMed  Google Scholar 

  54. Camacho NP, Raggio CL, Doty SB, Root L, Zraick V, Ilg WA, Toledano TR, Boskey AL (2001) A controlled study of the effects of alendronate in a growing mouse model of osteogenesis imperfecta. Calcif Tissue Int 69(2):94–101

    Article  CAS  PubMed  Google Scholar 

  55. Bargman R, Huang A, Boskey AL, Raggio C, Pleshko N (2010) RANKL inhibition improves bone properties in a mouse model of osteogenesis imperfecta. Connect Tissue Res 51(2):123–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Cardinal M, Tys J, Roels T, Lafont S, Ominsky MS, Devogelaer JP, Chappard D, Mabilleau G, Ammann P, Nyssen-Behets C, Manicourt DH (2019) Sclerostin antibody reduces long bone fractures in the oim/oim model of osteogenesis imperfecta. Bone 124:137–147

    Article  CAS  PubMed  Google Scholar 

  57. Vanleene M, Saldanha Z, Cloyd KL, Jell G, Bou-Gharios G, Bassett JH, Williams GR, Fisk NM, Oyen ML, Stevens MM, Guillot PV, Shefelbine SJ (2011) Transplantation of human fetal blood stem cells in the osteogenesis imperfecta mouse leads to improvement in multiscale tissue properties. Blood 117(3):1053–1060

    Article  CAS  PubMed  Google Scholar 

  58. Li F, Wang X, Niyibizi C (2010) Bone marrow stromal cells contribute to bone formation following infusion into femoral cavities of a mouse model of osteogenesis imperfecta. Bone 47(3):546–555

    Article  PubMed  PubMed Central  Google Scholar 

  59. Saban J, Zussman MA, Havey R, Patwardhan AG, Schneider GB, King D (1996) Heterozygous oim mice exhibit a mild form of osteogenesis imperfecta. Bone 19(6):575–579

    Article  CAS  PubMed  Google Scholar 

  60. Fiedler IAK, Schmidt FN, Wölfel EM, Plumeyer C, Milovanovic P, Gioia R, Tonelli F, Bale HA, Jähn K, Besio R, Forlino A, Busse B (2018) Severely impaired bone material quality in chihuahua zebrafish resembles classical dominant human osteogenesis imperfecta. J Bone Miner Res 33(8):1489–1499

    Article  CAS  PubMed  Google Scholar 

  61. Asharani PV, Keupp K, Semler O, Wang W, Li Y, Thiele H, Yigit G, Pohl E, Becker J, Frommolt P, Sonntag C, Altmüller J, Zimmermann K, Greenspan DS, Akarsu NA, Netzer C, Schönau E, Wirth R, Hammerschmidt M, Nürnberg P, Wollnik B, Carney TJ (2012) Attenuated BMP1 function compromises osteogenesis, leading to bone fragility in humans and zebrafish. Am J Hum Genet 90(4):661–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Fisher S, Jagadeeswaran P, Halpern ME (2003) Radiographic analysis of zebrafish skeletal defects. Dev Biol 264(1):64–76

    Article  CAS  PubMed  Google Scholar 

  63. Suzuki N, Labosky PA, Furuta Y, Hargett L, Dunn R, Fogo AB, Takahara K, Peters DM, Greenspan DS, Hogan BL (1996) Failure of ventral body wall closure in mouse embryos lacking a procollagen C-proteinase encoded by Bmp1, a mammalian gene related to Drosophila tolloid. Development 122(11):3587–3595

    Article  CAS  PubMed  Google Scholar 

  64. Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS (2014) Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 23(12):3085–3101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7(9):540–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Marini JC, Cabral WA, Barnes AM, Chang W (2007) Components of the collagen prolyl 3-hydroxylation complex are crucial for normal bone development. Cell Cycle 6(14):1675–1681

    Article  CAS  PubMed  Google Scholar 

  67. Webb EA, Balasubramanian M, Fratzl-Zelman N, Cabral WA, Titheradge H, Alsaedi A, Saraff V, Vogt J, Cole T, Stewart S, Crabtree NJ, Sargent BM, Gamsjaeger S, Paschalis EP, Roschger P, Klaushofer K, Shaw NJ, Marini JC, Högler W (2017) Phenotypic spectrum in osteogenesis imperfecta due to mutations in TMEM38B: unraveling a complex cellular defect. J Clin Endocrinol Metab 102(6):2019–2028

    Article  PubMed  PubMed Central  Google Scholar 

  68. Cabral WA, Ishikawa M, Garten M, Makareeva EN, Sargent BM, Weis M, Barnes AM, Webb EA, Shaw NJ, Ala-Kokko L, Lacbawan FL, Högler W, Leikin S, Blank PS, Zimmerberg J, Eyre DR, Yamada Y, Marini JC (2016) Absence of the ER cation channel TMEM38B/TRIC-B disrupts intracellular calcium homeostasis and dysregulates collagen synthesis in recessive osteogenesis imperfecta. PLoS Genet 12(7):e1006156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Ichimura A, Takeshima H (2016) TRIC-B mutations causing osteogenesis imperfecta. Biol Pharm Bull 39(11):1743–1747

    Article  CAS  PubMed  Google Scholar 

  70. Morello R, Bertin TK, Chen Y, Hicks J, Tonachini L, Monticone M, Castagnola P, Rauch F, Glorieux FH, Vranka J, Bächinger HP, Pace JM, Schwarze U, Byers PH, Weis M, Fernandes RJ, Eyre DR, Yao Z, Boyce BF, Lee B (2006) CRTAP is required for prolyl 3- hydroxylation and mutations cause recessive osteogenesis imperfecta. Cell 127(2):291–304

    Article  CAS  PubMed  Google Scholar 

  71. Fratzl-Zelman N, Morello R, Lee B, Rauch F, Glorieux FH, Misof BM, Klaushofer K, Roschger P (2010) CRTAP deficiency leads to abnormally high bone matrix mineralization in a murine model and in children with osteogenesis imperfecta type VII. Bone. 46(3):820–6. https://doi.org/10.1016/j.bone.2009.10.037

    Article  CAS  PubMed  Google Scholar 

  72. Grafe I, Alexander S, Yang T, Lietman C, Homan EP, Munivez E, Chen Y, Jiang MM, Bertin T, Dawson B, Asuncion F, Ke HZ, Ominsky MS, Lee B (2016) Sclerostin antibody treatment improves the bone phenotype of Crtap(-/-) mice, a model of recessive osteogenesis imperfecta. J Bone Miner Res 31(5):1030–1040

    Article  CAS  PubMed  Google Scholar 

  73. Grafe I, Yang T, Alexander S, Homan EP, Lietman C, Jiang MM, Bertin T, Munivez E, Chen Y, Dawson B, Ishikawa Y, Weis MA, Sampath TK, Ambrose C, Eyre D, Bächinger HP, Lee B (2014) Excessive transforming growth factor-β signaling is a common mechanism in osteogenesis imperfecta. Nat Med 20(6):670–5. https://doi.org/10.1038/nm.3544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Vranka JA, Pokidysheva E, Hayashi L, Zientek K, Mizuno K, Ishikawa Y, Maddox K, Tufa S, Keene DR, Klein R, Bächinger HP (2010) Prolyl 3-hydroxylase 1 null mice display abnormalities in fibrillar collagen-rich tissues such as tendons, skin, and bones. J Biol Chem 285(22):17253–17262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Fratzl-Zelman N, Bächinger HP, Vranka JA, Roschger P, Klaushofer K, Rauch F (2016) Bone matrix hypermineralization in prolyl-3 hydroxylase 1 deficient mice. Bone 85:15–22

    Article  CAS  PubMed  Google Scholar 

  76. Homan EP, Lietman C, Grafe I, Lennington J, Morello R, Napierala D, Jiang MM, Munivez EM, Dawson B, Bertin TK, Chen Y, Lua R, Lichtarge O, Hicks J, Weis MA, Eyre D, Lee BH (2014) Differential effects of collagen prolyl 3-hydroxylation on skeletal tissues. PLoS Genet 10(1):e1004121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Choi JW, Sutor SL, Lindquist L, Evans GL, Madden BJ, Bergen HR 3rd, Hefferan TE, Yaszemski MJ, Bram RJ (2009) Severe osteogenesis imperfecta in cyclophilin B-deficient mice. PLoS Genet 5(12):e1000750

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Cabral WA, Perdivara I, Weis M, Terajima M, Blissett AR, Chang W, Perosky JE, Makareeva EN, Mertz EL, Leikin S, Tomer KB, Kozloff KM, Eyre DR, Yamauchi M, Marini JC (2014) Abnormal type I collagen post-translational modification and crosslinking in a cyclophilin B KO mouse model of recessive osteogenesis imperfecta. PLoS Genet 10(6):e1004465

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Yazawa M, Ferrante C, Feng J, Mio K, Ogura T, Zhang M, Lin PH, Pan Z, Komazaki S, Kato K, Nishi M, Zhao X, Weisleder N, Sato C, Ma J, Takeshima H (2007) TRIC channels are essential for Ca2+ handling in intracellular stores. Nature 448(7149):78–82

    Article  CAS  PubMed  Google Scholar 

  80. Yamazaki D, Komazaki S, Nakanishi H, Mishima A, Nishi M, Yazawa M, Yamazaki T, Taguchi R, Takeshima H (2009) Essential role of the TRIC-B channel in Ca2+ handling of alveolar epithelial cells and in perinatal lung maturation. Development 136(14):2355–2361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhao C, Ichimura A, Qian N, Iida T, Yamazaki D, Noma N, Asagiri M, Yamamoto K, Komazaki S, Sato C, Aoyama F, Sawaguchi A, Kakizawa S, Nishi M, Takeshima H (2016) Mice lacking the intracellular cation channel TRIC-B have compromised collagen production and impaired bone mineralization. Sci Signal 9(428):ra49

    Article  PubMed  CAS  Google Scholar 

  82. Tonelli F, Cotti S, Leoni L, Besio R, Gioia R, Marchese L, Giorgetti S, Villani S, Gistelinck C, Wagener R, Kobbe B, Fiedler IAK, Larionova D, Busse B, Eyre D, Rossi A, Witten PE, Forlino A (2020) Crtap and p3h1 knock out zebrafish support defective collagen chaperoning as the cause of their osteogenesis imperfecta phenotype. Matrix Biol 90:40–60

    Article  CAS  PubMed  Google Scholar 

  83. Rosset EM, Bradshaw AD (2016) SPARC/osteonectin in mineralized tissue. Matrix Biol 52–54:78–87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Lietman CD, Rajagopal A, Homan EP, Munivez E, Jiang MM, Bertin TK, Chen Y, Hicks J, Weis M, Eyre D, Lee B, Krakow D (2014) Connective tissue alterations in Fkbp10-/- mice. Hum Mol Genet 23(18):4822–4831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Lim J, Lietman C, Grol MW, Castellon A, Dawson B, Adeyeye M, Rai J, Weis M, Keene DR, Schweitzer R, Park D, Eyre DR, Krakow D, Lee BH (2021) Localized chondro-ossification underlies joint dysfunction and motor deficits in the Fkbp10 mouse model of osteogenesis imperfecta. Proc Natl Acad Sci USA 118(25):e2100690118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lietman CD, Lim J, Grafe I, Chen Y, Ding H, Bi X, Ambrose CG, Fratzl-Zelman N, Roschger P, Klaushofer K, Wagermaier W, Schmidt I, Fratzl P, Rai J, Weis M, Eyre D, Keene DR, Krakow D, Lee BH (2017) Fkbp10 deletion in osteoblasts leads to qualitative defects in bone. J Bone Miner Res 32(6):1354–1367

    Article  CAS  PubMed  Google Scholar 

  87. Kasamatsu A, Uzawa K, Hayashi F, Kita A, Okubo Y, Saito T, Kimura Y, Miyamoto I, Oka N, Shiiba M, Ito C, Toshimori K, Miki T, Yamauchi M, Tanzawa H (2019) Deficiency of lysyl hydroxylase 2 in mice causes systemic endoplasmic reticulum stress leading to early embryonic lethality. Biochem Biophys Res Commun 512(3):486–491

    Article  CAS  PubMed  Google Scholar 

  88. Nagai N, Hosokawa M, Itohara S, Adachi E, Matsushita T, Hosokawa N, Nagata K (2000) Embryonic lethality of molecular chaperone hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 150(6):1499–1506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Gilmour DT, Lyon GJ, Carlton MB, Sanes JR, Cunningham JM, Anderson JR, Hogan BL, Evans MJ, Colledge WH (1998) Mice deficient for the secreted glycoprotein SPARC/osteonectin/BM40 develop normally but show severe age-onset cataract formation and disruption of the lens. EMBO J 17(7):1860–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mansergh FC, Wells T, Elford C, Evans SL, Perry MJ, Evans MJ, Evans BA (2007) Osteopenia in Sparc (osteonectin)-deficient mice: characterization of phenotypic determinants of femoral strength and changes in gene expression. Physiol Genomics 32(1):64–73

    Article  CAS  PubMed  Google Scholar 

  91. Boskey AL, Moore DJ, Amling M, Canalis E, Delany AM (2003) Infrared analysis of the mineral and matrix in bones of osteonectin null mice and their wildtype controls. J Bone Miner Res 18(6):1005–1011

    Article  CAS  PubMed  Google Scholar 

  92. Delany AM, Amling M, Priemel M, Howe C, Baron R, Canalis E (2000) Osteopenia and decreased bone formation in osteonectin-deficient mice. J Clin Invest 105(7):915–923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Lindert U, Weis MA, Rai J, Seeliger F, Hausser I, Leeb T, Eyre D, Rohrbach M, Giunta C (2015) Molecular consequences of the SERPINH1/HSP47 mutation in the Dachshund natural model of osteogenesis imperfecta. J Biol Chem 290(29):17679–17689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gistelinck C, Witten PE, Huysseune A, Symoens S, Malfait F, Larionova D, Simoens P, Dierick M, Van Hoorebeke L, De Paepe A, Kwon RY, Weis M, Eyre DR, Willaert A, Coucke PJ (2016) Loss of Type I collagen telopeptide lysyl hydroxylation causes musculoskeletal abnormalities in a Zebrafish model of Bruck Syndrome. J Bone Miner Res 31(11):1930–1942

    Article  CAS  PubMed  Google Scholar 

  95. Hanagata N, Li X, Morita H, Takemura T, Li J, Minowa T (2011) Characterization of the osteoblast-specific transmembrane protein IFITM5 and analysis of IFITM5-deficient mice. J Bone Miner Metab 29(3):279–290

    Article  CAS  PubMed  Google Scholar 

  96. Becker J, Semler O, Gilissen C, Li Y, Bolz HJ, Giunta C, Bergmann C, Rohrbach M, Koerber F, Zimmermann K, de Vries P, Wirth B, Schoenau E, Wollnik B, Veltman JA, Hoischen A, Netzer C (2011) Exome sequencing identifies truncating mutations in human SERPINF1 in autosomal-recessive osteogenesis imperfecta. Am J Hum Genet 88(3):362–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lietman CD, Marom R, Munivez E, Bertin TK, Jiang MM, Chen Y, Dawson B, Weis MA, Eyre D, Lee B (2015) A transgenic mouse model of OI type V supports a neomorphic mechanism of the IFITM5 mutation. J Bone Miner Res 30(3):489–498

    Article  PubMed  CAS  Google Scholar 

  98. Guterman-Ram G, Stephan C, Kozloff K, Marini J (2019) New mouse model for atypical type VI osteogenesis imperfecta caused by IFITM5 S40L mutation [abstract]. In: Abstracts of the ECTS Congress 2019. Calcif Tissue Int 104:P321

  99. Doll JA, Stellmach VM, Bouck NP, Bergh AR, Lee C, Abramson LP, Cornwell ML, Pins MR, Borensztajn J, Crawford SE (2003) Pigment epithelium-derived factor regulates the vasculature and mass of the prostate and pancreas. Nat Med 9(6):774–780

    Article  CAS  PubMed  Google Scholar 

  100. Bogan R, Riddle RC, Li Z, Kumar S, Nandal A, Faugere MC, Boskey A, Crawford SE, Clemens TL (2013) A mouse model for human osteogenesis imperfecta type VI. J Bone Miner Res 28(7):1531–1536

    Article  CAS  PubMed  Google Scholar 

  101. Long F (2011) Building strong bones: molecular regulation of the osteoblast lineage. Nat Rev Mol Cell Biol 13(1):27–38

    Article  PubMed  CAS  Google Scholar 

  102. Nikaido T, Yokoya S, Mori T, Hagino S, Iseki K, Zhang Y, Takeuchi M, Takaki H, Kikuchi S, Wanaka A (2001) Expression of the novel transcription factor OASIS, which belongs to the CREB/ATF family, in mouse embryo with special reference to bone development. Histochem Cell Biol 116(2):141–148

    Article  CAS  PubMed  Google Scholar 

  103. Fiscaletti M, Biggin A, Bennetts B, Wong K, Briody J, Pacey V, Birman C, Munns CF (2018) Novel variant in Sp7/Osx associated with recessive osteogenesis imperfecta with bone fragility and hearing impairment. Bone 110:66–75

    Article  CAS  PubMed  Google Scholar 

  104. Hsieh JC, Lee L, Zhang L, Wefer S, Brown K, DeRossi C, Wines ME, Rosenquist T, Holdener BC (2003) Mesd encodes an LRP5/6 chaperone essential for specification of mouse embryonic polarity. Cell 112(3):355–367

    Article  CAS  PubMed  Google Scholar 

  105. McMahon AP, Bradley A (1990) The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 62(6):1073–1085

    Article  CAS  PubMed  Google Scholar 

  106. Thomas KR, Musci TS, Neumann PE, Capecchi MR (1991) Swaying is a mutant allele of the proto-oncogene Wnt-1. Cell 67(5):969–976

    Article  CAS  PubMed  Google Scholar 

  107. Joeng KS, Lee YC, Jiang MM, Bertin TK, Chen Y, Abraham AM, Ding H, Bi X, Ambrose CG, Lee BH (2014) The swaying mouse as a model of osteogenesis imperfecta caused by WNT1 mutations. Hum Mol Genet 23(15):4035–4042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Joeng KS, Lee YC, Lim J, Chen Y, Jiang MM, Munivez E, Ambrose C, Lee BH (2017) Osteocyte-specific WNT1 regulates osteoblast function during bone homeostasis. J Clin Invest 127(7):2678–2688

    Article  PubMed  PubMed Central  Google Scholar 

  109. Yorgan TA, Rolvien T, Stürznickel J, Vollersen N, Lange F, Zhao W, Baranowsky A, Rosenthal L, Hermans-Borgmeyer I, Sharaf A, Karsak M, David JP, Oheim R, Amling M, Schinke T (2020) Mice carrying a ubiquitous R235W mutation of Wnt1 display a bone-specific phenotype. J Bone Miner Res 35(9):1726–1737

    Article  CAS  PubMed  Google Scholar 

  110. Vollersen N, Zhao W, Rolvien T, Lange F, Schmidt FN, Sonntag S, Shmerling D, von Kroge S, Stockhausen KE, Sharaf A, Schweizer M, Karsak M, Busse B, Bockamp E, Semler O, Amling M, Oheim R, Schinke T, Yorgan TA (2021) The WNT1G177C mutation specifically affects skeletal integrity in a mouse model of osteogenesis imperfecta type XV. Bone Res 9(1):48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Sekiya H, Murakami T, Saito A, Hino S, Tsumagari K, Ochiai K, Imaizumi K (2010) Effects of the bisphosphonate risedronate on osteopenia in OASIS-deficient mice. J Bone Miner Metab 28(4):384–394

    Article  CAS  PubMed  Google Scholar 

  112. Murakami T, Saito A, Hino S, Kondo S, Kanemoto S, Chihara K, Sekiya H, Tsumagari K, Ochiai K, Yoshinaga K, Saitoh M, Nishimura R, Yoneda T, Kou I, Furuichi T, Ikegawa S, Ikawa M, Okabe M, Wanaka A, Imaizumi K (2009) Signalling mediated by the endoplasmic reticulum stress transducer OASIS is involved in bone formation. Nat Cell Biol 11(10):1205–1211

    Article  CAS  PubMed  Google Scholar 

  113. Nakashima K, Zhou X, Kunkel G, Zhang Z, Deng JM, Behringer RR, de Crombrugghe B (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29

    Article  CAS  PubMed  Google Scholar 

  114. Baek WY, de Crombrugghe B, Kim JE (2010) Postnatally induced inactivation of Osterix in osteoblasts results in the reduction of bone formation and maintenance. Bone 46(4):920–928

    Article  CAS  PubMed  Google Scholar 

  115. Holdener BC, Faust C, Rosenthal NS, Magnuson T (1994) msd is required for mesoderm induction in mice. Development 120(5):1335–1346

    Article  CAS  PubMed  Google Scholar 

  116. Lighthouse JK, Zhang L, Hsieh JC, Rosenquist T, Holdener BC (2011) MESD is essential for apical localization of megalin/LRP2 in the visceral endoderm. Dev Dyn 240(3):577–588

    Article  CAS  PubMed  Google Scholar 

  117. Kague E, Roy P, Asselin G, Hu G, Simonet J, Stanley A, Albertson C, Fisher S (2016) Osterix/Sp7 limits cranial bone initiation sites and is required for formation of sutures. Dev Biol 413(2):160–172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kuchta K, Knizewski L, Wyrwicz LS, Rychlewski L, Ginalski K (2009) Comprehensive classification of nucleotidyltransferase fold proteins: identification of novel families and their representatives in human. Nucleic Acids Res 37(22):7701–7714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Barragán I, Borrego S, Abd El-Aziz MM, El-Ashry MF, Abu-Safieh L, Bhattacharya SS, Antiñolo G (2008) Genetic analysis of FAM46A in Spanish families with autosomal recessive retinitis pigmentosa: characterisation of novel VNTRs. Ann Hum Genet 72(Pt 1):26–34

    PubMed  Google Scholar 

  120. Diener S, Bayer S, Sabrautzki S, Wieland T, Mentrup B, Przemeck GK, Rathkolb B, Graf E, Hans W, Fuchs H, Horsch M, Schwarzmayr T, Wolf E, Klopocki E, Jakob F, Strom TM, Hrabě de Angelis M, Lorenz-Depiereux B (2016) Exome sequencing identifies a nonsense mutation in Fam46a associated with bone abnormalities in a new mouse model for skeletal dysplasia. Mamm Genome 27(3–4):111–121

    Article  CAS  PubMed  Google Scholar 

  121. Lu CL, Ortmeier S, Brudvig J, Moretti T, Cain J, Boyadjiev SA, Weimer JM, Kim J (2022) Collagen has a unique SEC24 preference for efficient export from the endoplasmic reticulum. Traffic 23(1):81–93

    Article  CAS  PubMed  Google Scholar 

  122. Baines AC, Adams EJ, Zhang B, Ginsburg D (2013) Disruption of the Sec24d gene results in early embryonic lethality in the mouse. PLoS ONE 8(4):e61114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. van Dijk FS, Zillikens MC, Micha D, Riessland M, Marcelis CL, de Die-Smulders CE, Milbradt J, Franken AA, Harsevoort AJ, Lichtenbelt KD, Pruijs HE, Rubio-Gozalbo ME, Zwertbroek R, Moutaouakil Y, Egthuijsen J, Hammerschmidt M, Bijman R, Semeins CM, Bakker AD, Everts V, Klein-Nulend J, Campos-Obando N, Hofman A, te Meerman GJ, Verkerk AJ, Uitterlinden AG, Maugeri A, Sistermans EA, Waisfisz Q, Meijers-Heijboer H, Wirth B, Simon ME, Pals G (2013) PLS3 mutations in X-linked osteoporosis with fractures. N Engl J Med 369(16):1529–1536

    Article  PubMed  CAS  Google Scholar 

  124. Fahiminiya S, Majewski J, Al-Jallad H, Moffatt P, Mort J, Glorieux FH, Roschger P, Klaushofer K, Rauch F (2014) Osteoporosis caused by mutations in PLS3: clinical and bone tissue characteristics. J Bone Miner Res 29(8):1805–1814

    Article  CAS  PubMed  Google Scholar 

  125. Neugebauer J, Heilig J, Hosseinibarkooie S, Ross BC, Mendoza-Ferreira N, Nolte F, Peters M, Hölker I, Hupperich K, Tschanz T, Grysko V, Zaucke F, Niehoff A, Wirth B (2018) Plastin 3 influences bone homeostasis through regulation of osteoclast activity. Hum Mol Genet 27(24):4249–4262

    CAS  PubMed  Google Scholar 

  126. Yorgan TA, Sari H, Rolvien T, Windhorst S, Failla AV, Kornak U, Oheim R, Amling M, Schinke T (2020) Mice lacking plastin-3 display a specific defect of cortical bone acquisition. Bone 130:115062

    Article  CAS  PubMed  Google Scholar 

  127. Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW (2010) Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLoS ONE 5(4):e10367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the help from the library staff with finding the literature.

Funding

This work was supported by National Natural Science Foundation of China (No.81900805, No.81970698, No.81970708), Beijing Natural Science Foundation (No.7202216). The funding agencies had no roles in the study design, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

FL initiated the manuscript and wrote the first draft. ALL authors contributed to the writing of the manuscript, reviewed the final version, and approved submission.

Corresponding authors

Correspondence to Xiaoling Cai or Linong Ji.

Ethics declarations

Conflict of interest

Fang Lv, Xiaoling Cai, Linong Ji declares that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, F., Cai, X. & Ji, L. An Update on Animal Models of Osteogenesis Imperfecta. Calcif Tissue Int 111, 345–366 (2022). https://doi.org/10.1007/s00223-022-00998-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-00998-6

Keywords

Navigation