Skip to main content

Advertisement

Log in

Correlation Between Bone Mineral Density (BMD) and Paraspinal Muscle Fat Infiltration Based on QCT: A Cross-Sectional Study

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

To investigate the correlation between fatty infiltration of the paraspinal muscle and bone mineral density (BMD). In total, 367 subjects (182 men and 185 women) who underwent quantitative computed tomography (QCT) examination were enrolled in this study. A QCT Pro workstation was used to obtain the mean BMD of the lower lumbar spine (L3, L4, L5) and fat fraction (FF) of the paraspinal muscle (psoas and erector spinae) at the corresponding levels. The patient’s age, sex, body mass index, number of previous vertebral fractures, physical activity level, and visual analog scale (VAS) score for lower back pain were recorded. For categorical variables, one-way ANOVA and independent-samples t tests were performed. Spearman and Pearson correlation coefficients were used to analyze the correlations among continuous variables. Influential factors were analyzed by multivariate linear regression analysis. Regarding the mean paraspinal muscle FF, there were significant differences between the different vertebral fracture groups (P < 0.05). Age and VAS score showed a positive correlation with the mean paraspinal muscle FF (r = 0.389, 0.454). BMD showed a negative correlation with the mean paraspinal muscle FF (r =  − 0.721). The multiple linear regression analysis showed that vertebral fracture (β = 0.851, P = 0.021) and BMD (β =  − 4.341, P = 0.004) were independent factors of the mean paraspinal muscle FF. This study demonstrated that an advanced age, a greater VAS score, a higher number of vertebral fractures, and a lower BMD may be associated with more severe fatty infiltration of the paraspinal muscle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Shahidi B, Parra CL, Berry DB, Hubbard JC, Gombatto S, Zlomislic V, Allen RT, Hughes-Austin J, Garfin S, Ward SR (2017) Contribution of lumbar spine pathology and age to paraspinal muscle size and fatty infiltration. Spine (Phila Pa 1976) 42:616–623. https://doi.org/10.1097/BRS.0000000000001848

    Article  Google Scholar 

  2. Wang X, Wang S, Yan P, Bian Z, Li M, Hou C, Tian J, Zhu L (2018) Paravertebral injection of botulinum toxin-A reduces lumbar vertebral bone quality. J Orthop Res 36:2664–2670. https://doi.org/10.1002/jor.24029

    Article  CAS  PubMed  Google Scholar 

  3. Salimi H, Ohyama S, Terai H et al (2021) Trunk muscle mass measured by bioelectrical impedance analysis reflecting the cross-sectional area of the paravertebral muscles and back muscle strength: a cross-sectional analysis of a prospective cohort study of elderly population. J Clin Med. https://doi.org/10.3390/jcm10061187

    Article  PubMed  PubMed Central  Google Scholar 

  4. Habibi H, Takahashi S, Hoshino M et al (2021) Impact of paravertebral muscle in thoracolumbar and lower lumbar regions on outcomes following osteoporotic vertebral fracture: a multicenter cohort study. Arch Osteoporos 16:2. https://doi.org/10.1007/s11657-020-00866-6

    Article  PubMed  Google Scholar 

  5. Gandham A, Mesinovic J, Jansons P, Zengin A, Bonham MP, Ebeling PR, Scott D (2021) Falls, fractures, and areal bone mineral density in older adults with sarcopenic obesity: a systematic review and meta-analysis. Obes Rev 22:e13187. https://doi.org/10.1111/obr.13187

    Article  CAS  PubMed  Google Scholar 

  6. Lin YH, Shih YT, Teng MMH (2021) The impact of the “Osteo” component of osteosarcopenia on fragility fractures in post-menopausal women. Int J Mol Sci. https://doi.org/10.3390/ijms22105256

    Article  PubMed  PubMed Central  Google Scholar 

  7. Dai D, Xu F, Sun R, Yuan L, Sheng Z, Xie Z (2020) Decreased lower-extremity muscle performance is associated with decreased hip bone mineral density and increased estimated fracture risk in community-dwelling postmenopausal women. Arch Osteoporos 15:173. https://doi.org/10.1007/s11657-020-00835-z

    Article  PubMed  Google Scholar 

  8. Elhakeem A, Hartley A, Luo Y, Goertzen AL, Hannam K, Clark EM, Leslie WD, Tobias JH (2019) Lean mass and lower limb muscle function in relation to hip strength, geometry and fracture risk indices in community-dwelling older women. Osteoporos Int 30:211–220. https://doi.org/10.1007/s00198-018-4795-z

    Article  CAS  PubMed  Google Scholar 

  9. Seo HS, Lee H, Kim S, Lee SK, Lee KY, Kim NH, Shin C (2021) Paravertebral muscles as indexes of sarcopenia and sarcopenic obesity: comparison with imaging and muscle function indexes and impact on cardiovascular and metabolic disorders. AJR Am J Roentgenol 216:1596–1606. https://doi.org/10.2214/AJR.20.22934

    Article  PubMed  Google Scholar 

  10. Takahashi S, Hoshino M, Takayama K et al (2020) The natural course of the paravertebral muscles after the onset of osteoporotic vertebral fracture. Osteoporos Int 31:1089–1095. https://doi.org/10.1007/s00198-020-05338-8

    Article  CAS  PubMed  Google Scholar 

  11. Biltz NK, Collins KH, Shen KC, Schwartz K, Harris CA, Meyer GA (2020) Infiltration of intramuscular adipose tissue impairs skeletal muscle contraction. J Physiol 598:2669–2683. https://doi.org/10.1113/JP279595

    Article  CAS  PubMed  Google Scholar 

  12. Beasley LE, Koster A, Newman AB et al (2009) Inflammation and race and gender differences in computerized tomography-measured adipose depots. Obesity (Silver Spring) 17:1062–1069. https://doi.org/10.1038/oby.2008.627

    Article  Google Scholar 

  13. Zhu W, Wang W, Kong C, Wang Y, Pan F, Lu S (2020) Lumbar muscle fat content has more correlations with living quality than sagittal vertical axis in elderly patients with degenerative lumbar disorders. Clin Interv Aging 15:1717–1726. https://doi.org/10.2147/CIA.S265826

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dallaway A, Kite C, Griffen C, Duncan M, Tallis J, Renshaw D, Hattersley J (2020) Age-related degeneration of the lumbar paravertebral muscles: systematic review and three-level meta-regression. Exp Gerontol 133:110856. https://doi.org/10.1016/j.exger.2020.110856

    Article  CAS  PubMed  Google Scholar 

  15. Zhao Y, Huang M, Ding J et al (2019) Prediction of abnormal bone density and osteoporosis from lumbar spine MR using modified dixon quant in 257 subjects with quantitative computed tomography as reference. J Magn Reson Imaging 49:390–399. https://doi.org/10.1002/jmri.26233

    Article  PubMed  Google Scholar 

  16. Loomes KM, Spino C, Goodrich NP et al (2019) Bone density in children with chronic liver disease correlates with growth and cholestasis. Hepatology 69:245–257. https://doi.org/10.1002/hep.30196

    Article  CAS  PubMed  Google Scholar 

  17. Vaananen SP, Grassi L, Flivik G, Jurvelin JS, Isaksson H (2015) Generation of 3D shape, density, cortical thickness and finite element mesh of proximal femur from a DXA image. Med Image Anal 24:125–134. https://doi.org/10.1016/j.media.2015.06.001

    Article  PubMed  Google Scholar 

  18. Xu XM, Li N, Li K, Li XY, Zhang P, Xuan YJ, Cheng XG (2019) Discordance in diagnosis of osteoporosis by quantitative computed tomography and dual-energy X-ray absorptiometry in Chinese elderly men. J Orthop Transl 18:59–64. https://doi.org/10.1016/j.jot.2018.11.003

    Article  Google Scholar 

  19. Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM, Kaplan LM, Finkelstein JS (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29:542–550. https://doi.org/10.1002/jbmr.2063

    Article  CAS  PubMed  Google Scholar 

  20. Mao SS, Li D, Syed YS, Gao Y, Luo Y, Flores F, Child J, Cervantes M, Kalantar-Zadeh K, Budoff MJ (2017) Thoracic quantitative computed tomography (QCT) can sensitively monitor bone mineral metabolism: comparison of thoracic QCT vs lumbar QCT and dual-energy X-ray absorptiometry in detection of age-relative change in bone mineral density. Acad Radiol 24:1582–1587. https://doi.org/10.1016/j.acra.2017.06.013

    Article  PubMed  Google Scholar 

  21. Cheng X, Zhao K, Zha X et al (2021) Opportunistic screening using low-dose CT and the prevalence of osteoporosis in China: a nationwide, multicenter study. J Bone Miner Res 36:427–435. https://doi.org/10.1002/jbmr.4187

    Article  CAS  PubMed  Google Scholar 

  22. Yu AH, Duan-Mu YY, Zhang Y, Wang L, Guo Z, Yu YQ, Wang YS, Cheng XG (2018) Correlation between non-alcoholic fatty liver disease and visceral adipose tissue in non-obese Chinese adults: a CT evaluation. Korean J Radiol 19:923–929. https://doi.org/10.3348/kjr.2018.19.5.923

    Article  PubMed  PubMed Central  Google Scholar 

  23. Guo Z, Blake GM, Li K et al (2020) Liver fat content measurement with quantitative CT validated against MRI proton density fat fraction: a prospective study of 400 healthy volunteers. Radiology 294:89–97. https://doi.org/10.1148/radiol.2019190467

    Article  PubMed  Google Scholar 

  24. Peng X, Li X, Xu Z, Wang L, Cai W, Yang S, Liao W, Cheng X (2020) Age-related fatty infiltration of lumbar paraspinal muscles: a normative reference database study in 516 Chinese females. Quant Imaging Med Surg 10:1590–1601. https://doi.org/10.21037/qims-19-835

    Article  PubMed  PubMed Central  Google Scholar 

  25. Genant HK, Wu CY, van Kuijk C, Nevitt MC (1993) Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 8:1137–1148. https://doi.org/10.1002/jbmr.5650080915

    Article  CAS  PubMed  Google Scholar 

  26. Craig CL, Marshall AL, Sjostrom M et al (2003) International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc 35:1381–1395. https://doi.org/10.1249/01.MSS.0000078924.61453.FB

    Article  PubMed  Google Scholar 

  27. Downie WW, Leatham PA, Rhind VM, Wright V, Branco JA, Anderson JA (1978) Studies with pain rating scales. Ann Rheum Dis 37:378–381. https://doi.org/10.1136/ard.37.4.378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jun HS, Kim JH, Ahn JH et al (2016) The effect of lumbar spinal muscle on spinal sagittal alignment: evaluating muscle quantity and quality. Neurosurgery 79:847–855. https://doi.org/10.1227/NEU.0000000000001269

    Article  PubMed  Google Scholar 

  29. Masaki M, Ikezoe T, Fukumoto Y, Minami S, Aoyama J, Ibuki S, Kimura M, Ichihashi N (2016) Association of walking speed with sagittal spinal alignment, muscle thickness, and echo intensity of lumbar back muscles in middle-aged and elderly women. Aging Clin Exp Res 28:429–434. https://doi.org/10.1007/s40520-015-0442-0

    Article  PubMed  Google Scholar 

  30. He H, Liu Y, Tian Q, Papasian CJ, Hu T, Deng HW (2016) Relationship of sarcopenia and body composition with osteoporosis. Osteoporos Int 27:473–482. https://doi.org/10.1007/s00198-015-3241-8

    Article  CAS  PubMed  Google Scholar 

  31. Yoshimura N, Muraki S, Oka H, Iidaka T, Kodama R, Kawaguchi H, Nakamura K, Tanaka S, Akune T (2017) Is osteoporosis a predictor for future sarcopenia or vice versa? Four-year observations between the second and third ROAD study surveys. Osteoporos Int 28:189–199. https://doi.org/10.1007/s00198-016-3823-0

    Article  CAS  PubMed  Google Scholar 

  32. Cho TG, Park SW, Kim YB (2016) Chronic paraspinal muscle injury model in rat. J Korean Neurosurg Soc 59:430–436. https://doi.org/10.3340/jkns.2016.59.5.430

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhao Y, Huang M, Serrano Sosa M et al (2019) Fatty infiltration of paraspinal muscles is associated with bone mineral density of the lumbar spine. Arch Osteoporos 14:99. https://doi.org/10.1007/s11657-019-0639-5

    Article  PubMed  Google Scholar 

  34. Cholewicki J, Simons AP, Radebold A (2000) Effects of external trunk loads on lumbar spine stability. J Biomech 33:1377–1385. https://doi.org/10.1016/s0021-9290(00)00118-4

    Article  CAS  PubMed  Google Scholar 

  35. Sollmann N, Dieckmeyer M, Schlaeger S et al (2018) Associations between lumbar vertebral bone marrow and paraspinal muscle fat compositions-an investigation by chemical shift encoding-based water-fat MRI. Front Endocrinol (Lausanne) 9:563. https://doi.org/10.3389/fendo.2018.00563

    Article  Google Scholar 

  36. Griffith JF, Yeung DK, Antonio GE, Lee FK, Hong AW, Wong SY, Lau EM, Leung PC (2005) Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. Radiology 236:945–951. https://doi.org/10.1148/radiol.2363041425

    Article  PubMed  Google Scholar 

  37. Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, Klibanski A (2013) Marrow fat and bone–new perspectives. J Clin Endocrinol Metab 98:935–945. https://doi.org/10.1210/jc.2012-3634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cederholm T, Cruz-Jentoft AJ, Maggi S (2013) Sarcopenia and fragility fractures. Eur J Phys Rehabil Med 49:111–117

    CAS  PubMed  Google Scholar 

  39. Buehring B, Krueger D, Binkley N (2013) Effect of including historical height and radius BMD measurement on sarco-osteoporosis prevalence. J Cachexia Sarcopenia Muscle 4:47–54. https://doi.org/10.1007/s13539-012-0080-8

    Article  PubMed  Google Scholar 

  40. Kim JY, Chae SU, Kim GD, Cha MS (2013) Changes of paraspinal muscles in postmenopausal osteoporotic spinal compression fractures: magnetic resonance imaging study. J Bone Metab 20:75–81. https://doi.org/10.11005/jbm.2013.20.2.75

    Article  PubMed  PubMed Central  Google Scholar 

  41. Jeon I, Kim SW, Yu D (2021) Paraspinal muscle fatty degeneration as a predictor of progressive vertebral collapse in osteoporotic vertebral compression fractures. Spine J. https://doi.org/10.1016/j.spinee.2021.07.020

    Article  PubMed  Google Scholar 

  42. Dahlqvist JR, Vissing CR, Hedermann G, Thomsen C, Vissing J (2017) Fat replacement of paraspinal muscles with aging in healthy adults. Med Sci Sports Exerc 49:595–601. https://doi.org/10.1249/MSS.0000000000001119

    Article  PubMed  Google Scholar 

  43. Dallaway A, Hattersley J, Diokno M, Tallis J, Renshaw D, Wilson A, Wayte S, Weedall A, Duncan M (2020) Age-related degeneration of lumbar muscle morphology in healthy younger versus older men. Aging Male 23:1583–1597. https://doi.org/10.1080/13685538.2021.1878130

    Article  CAS  PubMed  Google Scholar 

  44. Kjaer P, Bendix T, Sorensen JS, Korsholm L, Leboeuf-Yde C (2007) Are MRI-defined fat infiltrations in the multifidus muscles associated with low back pain? BMC Med 5:2. https://doi.org/10.1186/1741-7015-5-2

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fortin M, Lazary A, Varga PP, McCall I, Battie MC (2016) Paraspinal muscle asymmetry and fat infiltration in patients with symptomatic disc herniation. Eur Spine J 25:1452–1459. https://doi.org/10.1007/s00586-016-4503-7

    Article  PubMed  Google Scholar 

  46. Mengiardi B, Schmid MR, Boos N, Pfirrmann CW, Brunner F, Elfering A, Hodler J (2006) Fat content of lumbar paraspinal muscles in patients with chronic low back pain and in asymptomatic volunteers: quantification with MR spectroscopy. Radiology 240:786–792. https://doi.org/10.1148/radiol.2403050820

    Article  PubMed  Google Scholar 

  47. Sions JM, Beisheim EH, Hoggarth MA, Elliott JM, Hicks GE, Pohlig RT, Seth M (2021) Trunk muscle characteristics: differences between sedentary adults with and without unilateral lower limb amputation. Arch Phys Med Rehabil 102:1331–1339. https://doi.org/10.1016/j.apmr.2021.02.008

    Article  PubMed  Google Scholar 

  48. Teichtahl AJ, Urquhart DM, Wang Y, Wluka AE, O’Sullivan R, Jones G, Cicuttini FM (2015) Physical inactivity is associated with narrower lumbar intervertebral discs, high fat content of paraspinal muscles and low back pain and disability. Arthritis Res Ther 17:114. https://doi.org/10.1186/s13075-015-0629-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the National Natural Science Foundation of China (Grant No. 81671652).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Chen.

Ethics declarations

Conflict of interest

Xiangwen Li, Yuxue Xie, Yuyang Zhang, Rong Lu, Hongyue Tao and Shuang Chen declare that they have no conflicts of interest.

Ethical Approval

The prospective study was approved by the ethics committee of our institution. Informed consent was obtained from all individual participants included in the study.

Data Availability

The datasets used or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Human and Animal Rights

This study was performed in accordance with the ethical standards as laid down in the 1964 declaration of Helsinki and its later amendments.

Informed Consent

All participants provided written informed consents prior to survey enrollment.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Zhang, Y., Xie, Y. et al. Correlation Between Bone Mineral Density (BMD) and Paraspinal Muscle Fat Infiltration Based on QCT: A Cross-Sectional Study. Calcif Tissue Int 110, 666–673 (2022). https://doi.org/10.1007/s00223-022-00944-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-022-00944-6

Keywords

Navigation