Skip to main content

Advertisement

Log in

Clinical Phenotype and Bone Biopsy Characteristics in a Child with Proteus Syndrome

  • Case Reports
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Proteus syndrome is a rare genetic disorder, which is characterized by progressive, segmental, or patchy overgrowth of diverse tissues of all germ layers, including the skeleton. Here, we present a 9-year-old girl with a somatic-activating mutation (c.49G > A; p.Glu17Lys) in AKT1 gene in a mosaic status typical for Proteus syndrome. She presented with hemihypertrophy of the right lower limb and a “moccasin” lesion among others. A transiliac bone biopsy was analyzed for bone histology/histomorphometry as well as bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) characteristics based on quantitative backscattered electron imaging. Bone histomorphometry revealed highly increased mineralizing surface (Z-score + 2.3) and mineral apposition rate (Z-score + 19.3), no osteoclasts (Z-score − 2.1), and an increased amount of primary bone in the external cortex. BMDD abnormalities included a decreased mode calcium concentration in cancellous bone (Z-score − 1.7) and an increased percentage of highly mineralized cortical bone area (Z-score + 2.4) compared to reference. OLS characteristics showed several differences compared to reference data; among them, there were the highly increased OLS-porosity, OLS-area, and OLS-perimeter on the external cortex (Z-scores + 6.8, + 4.4 and 5.4, respectively). Our findings suggest that increased bone formation reduced matrix mineralization in cancellous bone while the enhanced amount of primary bone in the external cortex increased the portion of highly mineralized cortical bone and caused OLS-characteristics abnormalities. Our results indicate further that remodeling of primary bone might be disturbed or delayed in agreement with the decreased number of osteoclasts observed in this child with Proteus syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cohen MM, Hayden PW (1979) A newly recognised hamartomatous syndrome. Birth Defects Orig Artic Ser 15(5B):291–296

    PubMed  Google Scholar 

  2. Cohen MM Jr (2014) Proteus syndrome review: molecular, clinical, and pathologic features. Clin Genet 85:111–119. https://doi.org/10.1111/cge.12266.Review

    Article  CAS  PubMed  Google Scholar 

  3. Lindhurst MJ, Brinster LR, Kondolf HC, Shwetar JJ, Yourick MR, Shiferaw H, Keppler-Noreuil KM, Elliot G, Rivas C, Garrett L, Gomez-Rodriguez J, Sebire NJ, Hewitt SM, Schwartzberg PL, Biesecker LG (2019) A mouse model of Proteus syndrome. Hum Mol Genet 28:2920–2936. https://doi.org/10.1093/hmg/ddz116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cohen MM Jr (2005) Proteus syndrome: an update. Am J Med Genet C Semin Med Genet 137C(1):38–52

    Article  Google Scholar 

  5. Happle R, Steijlen PM, Theile U, Karitzky D, Tinschert S, Albrecht-Nebe H, Kuster W (1997) Patchy dermal hypoplasia as a characteristic feature of Proteus syndrome. Arch Dermatol 133:77–80

    Article  CAS  Google Scholar 

  6. Hoey SE, Eastwood D, Monsell F, Kangesu L, Harper JI, Sebire NJ (2008) Histopathological features of Proteus syndrome. Clin Exp Dermatol 33:234–238. https://doi.org/10.1111/j.1365-2230.2007.02601.x

    Article  CAS  PubMed  Google Scholar 

  7. Sansom JE, Jardine P, Lunt PW et al (1993) A case illustrating Proteus and Klippel-Trenaunay syndrome overlap. J Royal Soc Med 86:478–479

    CAS  Google Scholar 

  8. Hotamisligil GS, Ertogan F (1990) The Proteus syndrome: association with nephrogenic diabetes insipidus. Clin Genet 38:139–144. https://doi.org/10.1111/j.1399-0004.1990.tb03562.x

    Article  CAS  PubMed  Google Scholar 

  9. Biesecker L (2006) The challenges of Proteus syndrome: diagnosis and management. Eur J Hum Genet 14:1151–1157

    Article  Google Scholar 

  10. Turner JT, Cohen MM Jr, Biesecker LG (2004) Reassessment of the Proteus syndrome literature: application of diagnostic criteria to published cases. Am J Med Genet A 130A:111–122

    Article  Google Scholar 

  11. Beachkofsky TM, Sapp JC, Biesecker LG, Darling TN (2010) Progressive overgrowth of the cerebriform connective tissue nevus in patients with proteus syndrome. J Am Acad Dermatol 63:799–804

    Article  Google Scholar 

  12. De Becker I, Gajda DJ, Gilbert-Barnes E, Cohen MM Jr. (2000) Ocular manifestations in Proteus syndorme. Am J Med Genet 92:350–352

    Article  Google Scholar 

  13. Cohen MM Jr. (2001) Causes of premature death in Proteus syndrome. Am J Med Genet 101(1):1–3

    Article  Google Scholar 

  14. Fryns JP (1995) Late-onset isolated cystic hygroma. A first clinical sign of Proteus syndrome (Letter). Prenat Diagn 15:96–97

    Article  CAS  Google Scholar 

  15. da Costa OM, Pizarro CB, Graziadio C, Chem RC (1999) Proteus syndrome: a possible case associated to precocious puberty. Clin Dysmorphol 8:229–231

    Google Scholar 

  16. Roschger P, Fratz P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  CAS  Google Scholar 

  17. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  Google Scholar 

  18. Glorieux FH, Travers R, Taylor A et al (2000) Normative data for iliac bone histomorphometry in growing children. Bone 26:103–109

    Article  CAS  Google Scholar 

  19. Roschger P, Gupta HS, Berzlanovich A et al (2003) Constant mineralization density distribution in cancellous human bone. Bone 32:316–323

    Article  CAS  Google Scholar 

  20. Fratzl-Zelman N, Roschger P, Misof BM et al (2009) Normative data on mineralization density distribution in iliac bone biopsies of children, adolescents and young adults. Bone 44:1043–1048

    Article  CAS  Google Scholar 

  21. Blouin S, Fratzl-Zelman N, Glorieux FH, Roschger P, Klaushofer K, Marini JC, Rauch F (2017) Hypermineralization and high osteocyte lacunar density in osteogenesis imperfecta Type V bone indicate exuberant primary bone formation. J Bone Miner Res 32:1884–1892. https://doi.org/10.1002/jbmr.3180

    Article  CAS  PubMed  Google Scholar 

  22. Parfitt AM, Travers R, Rauch F, Glorieux FH (2000) Structural and cellular changes during bone growth in healthy children. Bone 27:487–494. https://doi.org/10.1016/s8756-3282(00)00353-7

    Article  CAS  PubMed  Google Scholar 

  23. Cohen MM Jr. (2003) Mental deficiency, alterations in performance, and CNS abnormalities in overgrowth syndromes. Am J Med Genet C Semin Med Genet 117C(1):49–56

    Article  Google Scholar 

  24. Kalhor M, Parvizi J, Slongo T, Ganz R (2004) Acetabular dysplasia associated with intra-articular lipomatous lesions in proteus syndrome. J Bone Joint Surg 86:831–834

    Article  CAS  Google Scholar 

  25. Biesecker LG, Sapp JC. Proteus Syndrome. 2012 Aug 9 [Updated 2019 Jan 10]. In: Adam MP, Ardinger HH, Pagon RA, et al. (eds). GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2021. https://www.ncbi.nlm.nih.gov/books/

  26. Keppler-Noreuil KM, Baker EH, Sapp JC, Lindhurst MJ, Biesecker LG (2016) Somatic AKT1 mutations cause meningiomas colocalizing with a characteristic pattern of cranial hyperostosis. Am J Med Genet A 170:2605–2610. https://doi.org/10.1002/ajmg.a.37737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Akgumus G, Chang F, Li MM (2017) Overgrowth syndromes caused by somatic variants in the phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin pathway. J Mol Diagn 19:487–497. https://doi.org/10.1016/j.jmoldx.2017.04.001

    Article  CAS  PubMed  Google Scholar 

  28. Lindhurst MJ, Sapp JC, Teer JK, Johnston JJ, Finn EM, Peters K, Turner J, Cannons JL, Bick D, Blakemore L, Blumhorst C, Brockmann K, Calder P, Cherman N, Deardorff MA, Everman DB, Golas G, Greenstein RM, Kato BM, Keppler-Noreuil KM, Kuznetsov SA, Miyamoto RT, Newman K, Ng D, O’Brien K, Rothenberg S, Schwartzentruber DJ, Singhal V, Tirabosco R, Upton J, Wientroub S, Zackai EH, Hoag K, Whitewood-Neal T, Robey PG, Schwartzberg PL, Darling TN, Tosi LL, Mullikin JC, Biesecker LG (2011) A mosaic activating mutation in AKT1 associated with the Proteus syndrome. N Engl J Med 18(365):611–619. https://doi.org/10.1056/NEJMoa1104017

    Article  CAS  Google Scholar 

  29. de Bruin EC, Whiteley JL, Corcoran C, Kirk PM, Fox JC, Armisen J, Lindemann JPO, Schiavon G, Ambrose HJ, Kohlmann A (2017) Accurate detection of low prevalence AKT1 E17K mutation in tissue or plasma from advanced cancer patients. PLoS ONE 12:e0175779. https://doi.org/10.1371/journal.pone.0175779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Roschger P, Dempster DW, Zhou H, Paschalis EP, Silverberg SJ, Shane E, Bilezikian JP, Klaushofer K (2007) New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res 22:717–723. https://doi.org/10.1359/jbmr.070120

    Article  PubMed  Google Scholar 

  31. Geserick M, Vogel M, Eckelt F, Schlingmann M, Hiemisch A, Baber R, Thiery J, Körner A, Kiess W, Kratzsch J (2020) Children and adolescents with obesity have reduced serum bone turnover markers and 25-hydroxyvitamin D but increased parathyroid hormone concentrations—results derived from new pediatric reference ranges. Bone 132:115124. https://doi.org/10.1016/j.bone.2019.115124

    Article  CAS  PubMed  Google Scholar 

  32. Rauchenzauner M, Schmid A, Heinz-Erian P, Kapelari K, Falkensammer G, Griesmacher A, Finkenstedt G, Högler W (2007) Sex- and age-specific reference curves for serum markers of bone turnover in healthy children from 2 months to 18 years. J Clin Endocrinol Metab 92:443–449. https://doi.org/10.1210/jc.2006-1706

    Article  CAS  PubMed  Google Scholar 

  33. Bonewald LF (2011) The amazing osteocyte. J Bone Miner Res 26:229–238. https://doi.org/10.1002/jbmr.320

    Article  CAS  PubMed  Google Scholar 

  34. Hernandez CJ, Majeska RJ, Schaffler MB (2004) Osteocyte density in woven bone. Bone 35:1095–1099. https://doi.org/10.1016/j.bone.2004.07.002

    Article  CAS  PubMed  Google Scholar 

  35. Kerschnitzki M, Wagermaier W, Roschger P, Seto J, Shahar R, Duda GN, Mundlos S, Fratzl P (2011) The organization of the osteocyte network mirrors the extracellular matrix orientation in bone. J Struct Biol 173:303–311. https://doi.org/10.1016/j.jsb.2010.11.014

    Article  CAS  PubMed  Google Scholar 

  36. Kerschnitzki M, Kollmannsberger P, Burghammer M, Duda GN, Weinkamer R, Wagermaier W, Fratzl P (2013) Architecture of the osteocyte network correlates with bone material quality. J Bone Miner Res 28:1837–1845. https://doi.org/10.1002/jbmr.1927

    Article  CAS  PubMed  Google Scholar 

  37. Jandl NM, von Kroge S, Stürznickel J, Baranowsky A, Stockhausen KE, Mushumba H, Beil FT, Püschel K, Amling M, Rolvien T (2020) Large osteocyte lacunae in iliac crest infantile bone are not associated with impaired mineral distribution or signs of osteocytic osteolysis. Bone 135:115324. https://doi.org/10.1016/j.bone.2020.115324

    Article  CAS  PubMed  Google Scholar 

  38. Fratzl-Zelman N, Gamsjaeger S, Blouin S, Kocijan R, Plasenzotti P, Rokidi S, Nawrot-Wawrzyniak K, Roetzer K, Uyanik G, Haeusler G, Shane E, Cohen A, Klaushofer K, Paschalis EP, Roschger P, Fratzl P, Zwerina J, Zwettler E (2020) Alterations of bone material properties in adult patients with X-linked hypophosphatemia (XLH). J Struct Biol 211(3):107556. https://doi.org/10.1016/j.jsb.2020.107556

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank P. Keplinger, S. Lueger, and P. Messmer for technical assistance with sample preparation, light microscopy, and qBEI measurements at the Bone Material Laboratory of the Ludwig Boltzmann Institute of Osteology, Vienna, Austria.

Author information

Authors and Affiliations

Authors

Contributions

Study design: AAK, RG; Study conduct: AAK, RG. Data collection: AAK, BMM, FL, SB, PR, SGK, MS, GTM, WG. Data analysis: AAK, BMM, FL, SB, PR. Data interpretation: AAK, BMM, FL, SB, PR. Drafting manuscript: AAK, BMM, SB. Revising manuscript content: AAK, BMM, FL, SB, PR, SGK, MS, GTM, WG, RG. Approving final version of the manuscript: AAK, BMM, FL, SB, PR, SGK, MS, GTM, WG, RG. AAK and BMM take responsibility for the integrity of the clinical and biopsy data analysis, respectively.

Corresponding author

Correspondence to Barbara M. Misof.

Ethics declarations

Disclosures

AAK, BMM, FL, SB, PR, SGK, MS, GTM, and WG state that they have no conflicts of interest. RG served as a consultant for Smith & Nephew and NuVasive Company, USA. This work was supported by the AUVA (Austrian Social Insurance for Occupational Risk) and the OEGK (Austrian Social Health Insurance Fund).

Informed Consent

Informed consent to participate and to publish was obtained from the patients’ parent.

Research Involving Human and/or Animal Participants

This study was performed in accordance with the ethical standards as laid down in the 1964 Declaration of Helsinki and was approved by the Institutional Ethics Committee (Ethikkommission der Wiener Krankenhäuser der Vinzenz Gruppe, Approval number EK 54/2020).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Kaissi, A., Misof, B.M., Laccone, F. et al. Clinical Phenotype and Bone Biopsy Characteristics in a Child with Proteus Syndrome. Calcif Tissue Int 109, 586–595 (2021). https://doi.org/10.1007/s00223-021-00862-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-021-00862-z

Keywords

Navigation