Skip to main content

Advertisement

Log in

The Effect of Ethanol Consumption on Composition and Morphology of Femur Cortical Bone in Wild-Type and ALDH2*2-Homozygous Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

ALDH2 inactivating mutation (ALDH2*2) is the most abundant mutation leading to bone morphological aberration. Osteoporosis has long been associated with changes in bone biomaterial in elderly populations. Such changes can be exacerbated with elevated ethanol consumption and in subjects with impaired ethanol metabolism, such as carriers of aldehyde dehydrogenase 2 (ALDH2)-deficient gene, ALDH2*2. So far, little is known about bone compositional changes besides a decrease in mineralization. Raman spectroscopic imaging has been utilized to study the changes in overall composition of C57BL/6 female femur bone sections, as well as in compound spatial distribution. Raman maps of bone sections were analyzed using multilinear regression with these four isolated components, resulting in maps of their relative distribution. A 15-week treatment of both wild-type (WT) and ALDH2*2/*2 mice with 20% ethanol in the drinking water resulted in a significantly lower mineral content (p < 0.05) in the bones. There was no significant change in mineral and collagen content due to the mutation alone (p > 0.4). Highly localized islets of elongated adipose tissue were observed on most maps. Elevated fat content was found in ALDH2*2 knock-in mice consuming ethanol (p < 0.0001) and this effect appeared cumulative. This work conclusively demonstrates that that osteocytes in femurs of older female mice accumulate fat, as has been previously theorized, and that fat accumulation is likely modulated by levels of acetaldehyde, the ethanol metabolite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Katsoulis M, Benetou V, Karapetyan T et al (2017) Excess mortality after hip fracture in elderly persons from Europe and the USA: the CHANCES project. J Intern Med 281:300–310

    CAS  PubMed  Google Scholar 

  2. Sözen T, Özışık L, Başaran NÇ (2017) An overview and management of osteoporosis. Eur J Rheumatol Inflamm 4:46–56

    Google Scholar 

  3. Maurel DB, Boisseau N, Benhamou CL, Jaffre C (2012) Alcohol and bone: review of dose effects and mechanisms. Osteoporos Int 23:1–16

    CAS  PubMed  Google Scholar 

  4. Chakkalakal DA (2005) Alcohol-induced bone loss and deficient bone repair. Alcoholism 29:2077–2090

    PubMed  Google Scholar 

  5. Mikosch P (2014) Alcohol and bone. Wien Med Wochenschr 164:15–24

    PubMed  Google Scholar 

  6. Kim MJ, Shim MS, Kim MK et al (2003) Effect of chronic alcohol ingestion on bone mineral density in males without liver cirrhosis. Korean J Intern Med 18:174–180

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zakhari S (2006) Overview: how is alcohol metabolized by the body? Alcohol Res 29:245

    Google Scholar 

  8. Brooks PJ, Enoch M-A, Goldman D et al (2009) The alcohol flushing response: an unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med 6:e50

    PubMed  Google Scholar 

  9. Yoshida A, Huang IY, Ikawa M (1984) Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA 81:258–261

    CAS  PubMed  Google Scholar 

  10. Steinmetz CG, Xie P, Weiner H, Hurley TD (1997) Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure 5:701–711

    CAS  PubMed  Google Scholar 

  11. Ni L, Zhou J, Hurley TD, Weiner H (1999) Human liver mitochondrial aldehyde dehydrogenase: three-dimensional structure and the restoration of solubility and activity of chimeric forms. Protein Sci 8:2784–2790

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Larson HN, Weiner H, Hurley TD (2005) Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase “Asian” variant. J Biol Chem 280(34):30550–30556

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yamaguchi J, Hasegawa Y, Kawasaki M et al (2006) ALDH2 polymorphisms and bone mineral density in an elderly Japanese population. Osteoporos Int 17:908–913

    CAS  PubMed  Google Scholar 

  14. Takeshima K, Nishiwaki Y, Suda Y et al (2017) A missense single nucleotide polymorphism in the ALDH2 gene, rs671, is associated with hip fracture. Sci Rep 7:428

    PubMed  PubMed Central  Google Scholar 

  15. Shimizu Y, Sakai A, Menuki K et al (2011) Reduced bone formation in alcohol-induced osteopenia is associated with elevated p21 expression in bone marrow cells in aldehyde dehydrogenase 2-disrupted mice. Bone 48:1075–1086

    CAS  PubMed  Google Scholar 

  16. Briot K (2013) DXA parameters: beyond bone mineral density. Joint Bone Spine 80:265–269

    PubMed  Google Scholar 

  17. Tsuchiya T, Sakai A, Menuki K et al (2013) Disruption of aldehyde dehydrogenase 2 gene results in altered cortical bone structure and increased cortical bone mineral density in the femoral diaphysis of mice. Bone 53:358–368

    CAS  PubMed  Google Scholar 

  18. Garcia JAD, Souza ALT, Cruz LHC et al (2015) Effects of ethanol consumption and alcohol detoxification on the biomechanics and morphology the bone in rat femurs. Braz J Biol 75:983–988

    CAS  PubMed  Google Scholar 

  19. Bredella MA, Daley SM, Kalra MK et al (2015) Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel (1)H MR spectroscopy: a feasibility study. Radiology 277:230–235

    PubMed  PubMed Central  Google Scholar 

  20. Cordes C, Baum T, Dieckmeyer M et al (2016) MR-based assessment of bone marrow fat in osteoporosis, diabetes, and obesity. Front Endocrinol 7:74

    Google Scholar 

  21. Burghardt AJ, Wang Y, Elalieh H et al (2007) Evaluation of fetal bone structure and mineralization in IGF-I deficient mice using synchrotron radiation microtomography and Fourier transform infrared spectroscopy. Bone 40:160–168

    CAS  PubMed  Google Scholar 

  22. Sivakumar S, Khatiwada CP, Sivasubramanian J (2014) Studies the alterations of biochemical and mineral contents in bone tissue of mus musculus due to aluminum toxicity and the protective action of desferrioxamine and deferiprone by FTIR, ICP-OES, SEM and XRD techniques. Spectrochimica Acta A 126:59–67

    CAS  Google Scholar 

  23. Sen I, Bozkurt O, Aras E et al (2015) Lipid profiles of adipose and muscle tissues in mouse models of juvenile onset of obesity without high fat diet induction: a fourier transform infrared (FT-IR) spectroscopic study. Appl Spectrosc 69:679–688

    CAS  PubMed  Google Scholar 

  24. Addison WN, Nelea V, Chicatun F et al (2015) Extracellular matrix mineralization in murine MC3T3-E1 osteoblast cultures: an ultrastructural, compositional and comparative analysis with mouse bone. Bone 71:244–256

    CAS  PubMed  Google Scholar 

  25. Ross RD, Mashiatulla M, Robling AG et al (2016) Bone matrix composition following PTH treatment is not dependent on sclerostin status. Calcif Tissue Int 98:149–157

    CAS  PubMed  Google Scholar 

  26. Vrahnas C, Pearson TA, Brunt AR et al (2016) Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation. Bone 93:146–154

    CAS  PubMed  Google Scholar 

  27. Ling Y, Rios HF, Myers ER et al (2005) DMP1 depletion decreases bone mineralization in vivo: an FTIR imaging analysis. J Bone Miner Res 20:2169–2177

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Verdelis K, Ling Y, Sreenath T et al (2008) DSPP effects on in vivo bone mineralization. Bone 43:983–990

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Aido M, Kerschnitzki M, Hoerth R et al (2015) Effect of in vivo loading on bone composition varies with animal age. Exp Gerontol 63:48–58

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Severcan F, Gorgulu G, Gorgulu ST, Guray T (2005) Rapid monitoring of diabetes-induced lipid peroxidation by Fourier transform infrared spectroscopy: evidence from rat liver microsomal membranes. Anal Biochem 339:36–40

    CAS  PubMed  Google Scholar 

  31. Iwasaki Y, Kazama JJ, Yamato H, Fukagawa M (2011) Changes in chemical composition of cortical bone associated with bone fragility in rat model with chronic kidney disease. Bone 48:1260–1267

    CAS  PubMed  Google Scholar 

  32. Tarnowski CP, Ignelzi MA Jr, Morris MD (2002) Mineralization of developing mouse calvaria as revealed by Raman microspectroscopy. J Bone Miner Res 17:1118–1126

    PubMed  Google Scholar 

  33. Unal M, Yang S, Akkus O (2014) Molecular spectroscopic identification of the water compartments in bone. Bone 67:228–236

    CAS  PubMed  Google Scholar 

  34. McNerny EMB, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:455–464

    PubMed  Google Scholar 

  35. Pascart T, Cortet B, Olejnik C et al (2016) Bone samples extracted from embalmed subjects are not appropriate for the assessment of bone quality at the molecular level using Raman spectroscopy. Anal Chem 88:2777–2783

    CAS  PubMed  Google Scholar 

  36. Lane NE, Yao W, Balooch M et al (2005) Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res 21:466–476

    PubMed  PubMed Central  Google Scholar 

  37. Kazanci M, Wagner HD, Manjubala NI et al (2007) Raman imaging of two orthogonal planes within cortical bone. Bone 41:456–461

    CAS  PubMed  Google Scholar 

  38. Gamsjaeger S, Masic A, Roschger P et al (2010) Cortical bone composition and orientation as a function of animal and tissue age in mice by Raman spectroscopy. Bone 47:392–399

    PubMed  Google Scholar 

  39. Perry DA, Salvin JW, Romfh P et al (2017) Responsive monitoring of mitochondrial redox states in heart muscle predicts impending cardiac arrest. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aan0117

    Article  PubMed  Google Scholar 

  40. Kallepitis C, Bergholt MS, Mazo MM et al (2017) Quantitative volumetric Raman imaging of three dimensional cell cultures. Nat Commun 8:14843

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Jiang X, Malkovskiy AV, Tian W et al (2014) Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles. Biomaterials 35:803–813

    CAS  PubMed  Google Scholar 

  42. Penner JC, Ferreira JAG, Secor PR et al (2016) Pf4 bacteriophage produced by Pseudomonas aeruginosa inhibits Aspergillus fumigatus metabolism via iron sequestration. Microbiology 162:1583–1594

    CAS  PubMed  Google Scholar 

  43. Zambelli VO, Gross ER, Chen C-H et al (2014) Aldehyde dehydrogenase-2 regulates nociception in rodent models of acute inflammatory pain. Sci Transl Med 6:25lra118

    Google Scholar 

  44. Osei-Sarfo K, Tang X-H, Urvalek AM et al (2013) The molecular features of tongue epithelium treated with the carcinogen 4-nitroquinoline-1-oxide and alcohol as a model for HNSCC. Carcinogenesis 34:2673–2681

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Urvalek AM, Osei-Sarfo K, Tang X-H et al (2015) Identification of ethanol and 4-nitroquinoline-1-oxide induced epigenetic and oxidative stress markers during oral cavity carcinogenesis. Alcoholism 39:1360–1372

    CAS  PubMed  Google Scholar 

  46. Kawamoto T (2003) Use of a new adhesive film for the preparation of multi-purpose fresh-frozen sections from hard tissues, whole-animals, insects and plants. Arch Histol Cytol 66:123–143

    PubMed  Google Scholar 

  47. Bergmann B, Mölne J, Gjertsson I (2015) The bone-inflammation-cartilage (BIC) stain: a novel staining method combining Safranin O and Van Gieson’s stains. J Histochem Cytochem 63:737–740

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Rumin J, Bonnefond H, Saint-Jean B et al (2015) The use of fluorescent Nile red and BODIPY for lipid measurement in microalgae. Biotechnol Biofuels 8:42

    PubMed  PubMed Central  Google Scholar 

  49. Howell NK, Herman H, Li-Chan ECY (2001) Elucidation of protein−lipid interactions in a lysozyme−corn oil system by fourier transform Raman spectroscopy. J Agric Food Chem 49:1529–1533

    CAS  PubMed  Google Scholar 

  50. Sadeghi-Jorabchi H, Hendra PJ, Wilson RH, Belton PS (1990) Determination of the total unsaturation in oils and margarines by Fourier transform Raman spectroscopy. J Am Oil Chem Soc 67:483–486

    CAS  Google Scholar 

  51. Krempien B, Manegold C, Ritz E, Bommer J (1976) The influence of immobilization on osteocyte morphology. Virchows Arch 370:55–68

    CAS  Google Scholar 

  52. Schie IW, Nolte L, Pedersen TL et al (2013) Direct comparison of fatty acid ratios in single cellular lipid droplets as determined by comparative Raman spectroscopy and gas chromatography. Analyst 138:6662–6670

    CAS  PubMed  Google Scholar 

  53. Meksiarun P, Andriana BB, Matsuyoshi H, Sato H (2016) Non-invasive quantitative analysis of specific fat accumulation in subcutaneous adipose tissues using Raman spectroscopy. Sci Rep 6:37068

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bonifacio A, Sergo V (2010) Effects of sample orientation in Raman microspectroscopy of collagen fibers and their impact on the interpretation of the amide III band. Vib Spectrosc 53:314–317

    CAS  Google Scholar 

  55. Grosse RL (2002) Handbook of Raman spectroscopy: from the Research Laboratory to the Process Line Edited by Ian R. Lewis (Kaiser Optical Systems) and Howell G. M. Edwards (University of Bradford). Dekker: New York, Basel. 2001. xiv + 1054 pp. $225. ISBN 0-8247-0557-2. J Am Chem Soc 124:5601–5602

    CAS  Google Scholar 

  56. Turner RT, Greene VS, Bell NH (2009) Demonstration that ethanol inhibits bone matrix synthesis and mineralization in the rat. J Bone Miner Res 2:61–66

    Google Scholar 

  57. Maddalozzo GF, Turner RT, Edwards CHT et al (2009) Alcohol alters whole body composition, inhibits bone formation, and increases bone marrow adiposity in rats. Osteoporos Int 20:1529–1538

    CAS  PubMed  Google Scholar 

  58. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453

    CAS  PubMed  Google Scholar 

  59. Buckley K, Matousek P, Parker AW, Goodship AE (2012) Raman spectroscopy reveals differences in collagen secondary structure which relate to the levels of mineralisation in bones that have evolved for different functions. J Raman Spectrosc 43:1237–1243

    CAS  Google Scholar 

  60. Maurel DB, Benaitreau D, Jaffré C et al (2014) Effect of the alcohol consumption on osteocyte cell processes: a molecular imaging study. J Cell Mol Med 18:1680–1693

    CAS  PubMed  Google Scholar 

  61. You L-D, Weinbaum S, Cowin SC, Schaffler MB (2004) Ultrastructure of the osteocyte process and its pericellular matrix. Anat Rec A Discov Mol Cell Evol Biol 278:505–513

    PubMed  Google Scholar 

  62. Coleman RA, Young BM, Turner LE, Cook RT (2008) A practical method of chronic ethanol administration in mice. Methods Mol Biol 447:49–59

    CAS  PubMed  Google Scholar 

  63. D’Souza El-Guindy NB, Kovacs EJ, De Witte P et al (2010) Laboratory models available to study alcohol-induced organ damage and immune variations: choosing the appropriate model. Alcoholism 34:1489–1511

    PubMed  Google Scholar 

  64. Ghanim H, Aljada A, Hofmeyer D et al (2004) Circulating mononuclear cells in the obese are in a proinflammatory state. Circulation 110:1564–1571

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported in part by CFRI Elizabeth Nash Memorial Fellowship 2015EN01 to AVM, NIH Grants T32 GM089626 and T32 DK 098132 to LDVW, RO1 AA18332 to LJG, and the MERIT Award R37AA11147 to DM-R. We thank Dr. Siyeon Rhee for help with editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrey V. Malkovskiy or Jayakumar Rajadas.

Ethics declarations

Conflict of interest

Dr. Mochly-Rosen reports filing patents related to ALDH2*2 and acetaldehyde metabolism, that were licensed to Foresee, a company she consults. However, none of the work was supported by or is in collaboration with the company. The other authors have no competing interests.

Human and Animal Rights

Mice were treated according to the Administrative Panel on Laboratory Animal Care (APLAC) guidelines, at Weill Cornell Medical College of Cornell University.

Informed Consent

All applicable institutional and/or national guidelines for the care and use of animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 5196 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malkovskiy, A.V., Van Wassenhove, L.D., Goltsev, Y. et al. The Effect of Ethanol Consumption on Composition and Morphology of Femur Cortical Bone in Wild-Type and ALDH2*2-Homozygous Mice. Calcif Tissue Int 108, 265–276 (2021). https://doi.org/10.1007/s00223-020-00769-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-020-00769-1

Keywords

Navigation