Skip to main content

Advertisement

Log in

Asiatic Acid Attenuates Bone Loss by Regulating Osteoclastic Differentiation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Anti-resorptive agents like bisphosphonates have been widely used for the treatment of postmenopausal osteoporosis. However, their long-term safety and efficacy are still controversial. This study is to examine the effect of Asiatic acid (AA) in osteoclastic differentiation, and further to investigate its effect on bone quality in animals. Effect of AA on osteoclastic differentiation was measured by Tartrate-resistant acid phosphatase stain, bone resorption pit assays, and quantitative real-time polymerase chain reaction. Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and transforming growth factor-β (TGF-β) signaling were measured by western blot before and after AA treatment. Ovariectomized (OVX) wild-type or Smad7 partially knock out mice were used to evaluate the effects of AA on bone quality by micro-computed tomography, mechanical test, and histomorphometry. Results revealed a dose-dependent inhibitory effect of AA on osteoclastic differentiation. After AA treatment, Smad7 was upregulated, while NF-κB and TGF-β signaling were inhibited during osteoclastic differentiation. Results from animal study revealed that AA prevented bone from further loss caused by OVX and increased the mechanical properties of femur in wild-type animals. AA also prevented bone loss in the Smad7-deficient animals. When combining with OVX in the Smad7-deficient mice, AA could only partially preserve their bone mass. Taken together, we found that AA effectively inhibited osteoclastic differentiation and attenuated osteoporosis, which effects may be through TGF-β and NF-κB pathways. This study reveals that AA may be a potential anti-resorptive agent for postmenopausal osteoporosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Curtis AEM, Moon ARJ, Dennison BEM et al (2015) Recent advances in the pathogenesis and treatment of osteoporosis. Clin Med (Northfield Il) 15:92–96

    Article  Google Scholar 

  2. Khosla S, Hofbauer LC (2017) Osteoporosis treatment : recent developments and ongoing challenges. Lancet Diabetes Endocrinol 5:898–907. https://doi.org/10.1016/S2213-8587(17)30188-2

    Article  PubMed  PubMed Central  Google Scholar 

  3. Whitaker M, Guo J, Ph D et al (2012) Bisphosphonates for Osteoporosis—where do we go. New Engl J Med 366:2048–2051

    Article  CAS  Google Scholar 

  4. Black DM, Bauer DC, Schwartz AV et al (2012) Continuing bisphosphonate treatment for osteoporosis—for whom and for how long? New Engl J Med 366:2051–2053

    Article  CAS  Google Scholar 

  5. Hald JD, Evangelou E, Langdahl BL, Ralston SH (2015) Bisphosphonates for the prevention of fractures in osteogenesis imperfecta: meta-analysis of placebo-controlled trials. J Bone Miner Res 30:929–933. https://doi.org/10.1002/jbmr.2410

    Article  CAS  PubMed  Google Scholar 

  6. Feng X, McDonald JM (2011) Disorders of bone remodeling. Annu Rev Pathol Mech Dis 6:121–145. https://doi.org/10.1146/annurev-pathol-011110-130203

    Article  CAS  Google Scholar 

  7. Wu M, Chen G, Li Y (2016) TGF- β and BMP signaling in osteoblast, skeletal development, and bone formation, homeostasis and disease. Bone Res 4:16009. https://doi.org/10.1038/boneres.2016.9

    Article  PubMed  PubMed Central  Google Scholar 

  8. Crane JL, Xian L, Cao X (2016) Role of TGF-β signaling in coupling bone remodeling. In: Feng X-H, Xu P, Lin X (eds) Methods in molecular biology. Springer, New York, pp 287–300

    Google Scholar 

  9. Tang L, He R, Yang G et al (2012) Asiatic acid inhibits liver fibrosis by blocking TGF-beta/Smad signaling in vivo and in vitro. PLoS ONE 7:e31350. https://doi.org/10.1371/journal.pone.0031350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iwai T, Murai J, Yoshikawa H, Tsumaki N (2008) Smad7 inhibits chondrocyte differentiation at multiple steps during endochondral bone formation and down-regulates p38 MAPK pathways. J Biol Chem 283:27154–27164. https://doi.org/10.1074/jbc.M801175200

    Article  CAS  PubMed  Google Scholar 

  11. Kawakatsu M, Kanno S, Gui T et al (2011) Loss of Smad3 gives rise to poor soft callus formation and accelerates early fracture healing. Exp Mol Pathol 90:107–115. https://doi.org/10.1016/j.yexmp.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  12. Yasui T, Kadono Y, Nakamura M et al (2011) J BMR regulation of RANKL-induced osteoclastogenesis by TGF-b through molecular interaction between. J Bone Miner Res 26:1447–1456. https://doi.org/10.1002/jbmr.357

    Article  CAS  PubMed  Google Scholar 

  13. Li N, Lee WYW, Lin S et al (2014) Partial loss of Smad7 function impairs bone remodeling, osteogenesis and enhances osteoclastogenesis in mice. Bone 67:46–55. https://doi.org/10.1016/j.bone.2014.06.033

    Article  CAS  PubMed  Google Scholar 

  14. Luo J, Yang Z, Ma Y et al (2016) LGR4 is a receptor for RANKL and negatively regulates osteoclast differentiation and bone resorption. Nat Med 22:539–546. https://doi.org/10.1038/nm.4076

    Article  CAS  PubMed  Google Scholar 

  15. Lee WY, Li N, Lin S et al (2016) miRNA-29b improves bone healing in mouse fracture model. Mol Cell Endocrinol 430:97–107. https://doi.org/10.1016/j.mce.2016.04.014

    Article  CAS  PubMed  Google Scholar 

  16. Huang S, Xu L, Sun Y et al (2015) An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Transl 3:26–33. https://doi.org/10.1016/j.jot.2014.07.005

    Article  Google Scholar 

  17. Zalli D, Neff L, Nagano K et al (2016) The actin-binding protein cofilin and its interaction with cortactin are required for podosome patterning in osteoclasts and bone resorption in vivo and in vitro. J Bone Miner Res 31:1701–1712. https://doi.org/10.1002/jbmr.2851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lin S, Lee WYW, Huang M et al (2016) Aspirin prevents bone loss with little mechanical improvement in high-fat-fed ovariectomized rats. Eur J Pharmacol 791:331–338. https://doi.org/10.1016/j.ejphar.2016.09.018

    Article  CAS  PubMed  Google Scholar 

  19. Lin S, Huang J, Fu Z et al (2015) The effects of atorvastatin on the prevention of osteoporosis and dyslipidemia in the high-fat-fed ovariectomized rats. Calcif Tissue Int 96:541–551. https://doi.org/10.1007/s00223-015-9975-7

    Article  CAS  PubMed  Google Scholar 

  20. Ko FC, Karim L, Brooks DJ et al (2017) Bisphosphonate withdrawal: effects on bone formation and bone resorption in maturing male mice. J Bone Miner Res 32:814–820. https://doi.org/10.1002/jbmr.3052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Samadfam R, Xia Q, Goltzman D (2007) Co-treatment of PTH with osteoprotegerin or alendronate increases its anabolic effect on the skeleton of oophorectomized mice. J Bone Miner Res 22:55–63. https://doi.org/10.1359/jbmr.060915

    Article  CAS  PubMed  Google Scholar 

  22. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  23. Lin S, Huang J, Zheng L et al (2014) Glucocorticoid-Induced Osteoporosis in Growing Rats. Calcif Tissue Int 95:362–373. https://doi.org/10.1007/s00223-014-9899-7

    Article  CAS  PubMed  Google Scholar 

  24. Lin SE, Huang JP, Wu LZ et al (2013) Prevention of osteopenia and dyslipidemia in rats after ovariectomy with combined aspirin and low-dose diethylstilbestrol. Biomed Environ Sci 26:249–257. https://doi.org/10.3967/0895-3988.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  25. Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28:2–17. https://doi.org/10.1002/jbmr.1805

    Article  PubMed  PubMed Central  Google Scholar 

  26. Freudlsperger C, Bian Y, Wise SC et al (2012) TGF- b and NF- k B signal pathway cross-talk is mediated through TAK1 and SMAD7 in a subset of head and neck cancers. Oncogene 32:1549–1559. https://doi.org/10.1038/onc.2012.171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gohil KJ, Patel JA, Gajjar AK (2010) Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 72:546–556. https://doi.org/10.4103/0250-474X.78519

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wu T, Geng J, Guo W et al (2017) Asiatic acid inhibits lung cancer cell growth in vitro and in vivo by destroying mitochondria. Acta Pharm Sin B 7:65–72. https://doi.org/10.1016/j.apsb.2016.04.003

    Article  PubMed  Google Scholar 

  29. Yun K, Kim J, Kim J et al (2008) Inhibition of LPS-induced NO and PGE 2 production by asiatic acid via NF-κB inactivation in RAW 264. 7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol 8:431–441. https://doi.org/10.1016/j.intimp.2007.11.003

    Article  CAS  PubMed  Google Scholar 

  30. Maquart FX, Chastang F, Simeon A, Birembaut P, Gillery PWY (1999) Triterpenes from Centella asiatica stimulate extracellular matrix accumulation in rat experimental wounds. Eur J Dermatol 9:289–296

    CAS  PubMed  Google Scholar 

  31. Ramanathan M, Sivakumar S, Anandvijayakumar PR et al (2007) Neuroprotective evaluation of standardized extract of centella asciatica in monosodium glutamate treated rats. Indian J Exp Biol 45:425–431

    CAS  PubMed  Google Scholar 

  32. Tang X-L, Yang X-Y, Jung H-J et al (2009) Asiatic acid induces colon cancer cell growth inhibition and apoptosis through mitochondrial death cascade. Biol Pharm Bull 32:1399–1405. https://doi.org/10.1248/bpb.32.1399

    Article  CAS  PubMed  Google Scholar 

  33. Hao C, Wu B, Hou Z et al (2017) Asiatic acid inhibits LPS-induced inflammatory response in human gingival fibroblasts. Int Immunopharmacol 50:313–318. https://doi.org/10.1016/j.intimp.2017.07.005

    Article  CAS  PubMed  Google Scholar 

  34. Mizukami J, Takaesu G, Akatsuka H et al (2002) Receptor activator of NF-κB ligand (RANKL) activates TAK1 mitogen-activated protein kinase kinase kinase through a signaling complex containing RANK, TAB 2, and TRAF6. Mol Cell Biol 22:992–1000. https://doi.org/10.1128/MCB.22.4.992-1000.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kobayashi Y, Mizoguchi T, Take I et al (2005) Prostaglandin E2 enhances osteoclastic differentiation of precursor cells through protein kinase A-dependent phosphorylation of TAK1. J Biol Chem 280:11395–11403. https://doi.org/10.1074/jbc.M411189200

    Article  CAS  PubMed  Google Scholar 

  36. Yan X, Liu Z, Chen Y (2009) Regulation of TGF- b signaling by Smad7 overview of TGF-b signaling pathways. Acta Biochim Biophys Sin (Shanghai) 41:263–272. https://doi.org/10.1093/abbs/gmp018.Review

    Article  CAS  Google Scholar 

  37. Li X, Ominsky MS, Warmington KS et al (2009) Sclerostin antibody treatment increases bone formation, bone mass, and bone strength in a rat model of postmenopausal osteoporosis. J Bone Miner Res 24:578–588. https://doi.org/10.1359/jbmr.081206

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Hong Kong Government Research Grant Council, General Research Fund (14119115, 14120118, 14160917, 9054014 N_CityU102/15 and T13-402/17-N), Health and Medical Research Fund (16170951), the National Natural Science Foundation of China (81874000, 81430049, and 81772322), Natural Science Foundation of Guangdong Science and Technology Department (2018A030313374, 2016B030309002), Guangdong Medical Sciences and Technology Fund (A2018111), Guangdong Traditional Chinese Medicine Bureau Fund (20191184), and funds from Affiliated Hospital of Guangdong Medical University (526Z20170001, 21201DFK20190057). This study was also supported in part by SMART program, Lui Che Woo Institute of Innovative Medicine, The Chinese University of Hong Kong and the research was made possible by resources donated by Lui Che Woo Foundation Limited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Li or Sien Lin.

Ethics declarations

Conflict of interest

Jianping Huang, Haixing Wang, Meiling Huang, Zhixian Zong, Xinyou Wu, Jianbin Xu, Huiyao Lan, Jinchang Zheng, Xiaoting Zhang, Yuk Wai Lee, Bo Wei, Liao Cui, Sien Lin, and Gang Li declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All animal experiments were approved by the Animal Experimental Ethical Committee of the Chinese University of Hong Kong (Ref. No.: 15-081-MIS).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1784 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wang, H., Huang, M. et al. Asiatic Acid Attenuates Bone Loss by Regulating Osteoclastic Differentiation. Calcif Tissue Int 105, 531–545 (2019). https://doi.org/10.1007/s00223-019-00596-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00596-z

Keywords

Navigation