Skip to main content

Advertisement

Log in

Bone-Bound Bisphosphonates Inhibit Proliferation of Breast Cancer Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Bisphosphonates are used in treating patients with breast cancer. In vitro studies have shown that bisphosphonates act directly on tumour cells, inhibiting cell proliferation and inducing apoptosis. In most such studies, drugs were added to culture media exposing cells to high bisphosphonate concentrations in solution. However, since bisphosphonates bind to bone hydroxyapatite with high affinity and remain bound for very long periods of time, these experimental systems are not an optimal model for the action of the drugs in vivo. The aim of this study was to determine whether bone-bound zoledronate has direct effects on adjacent breast cancer cells. Bone slices were pre-incubated with bisphosphonate solutions, washed, and seeded with cells of the breast cancer cell lines, MCF7 or MDA-MB-231. Proliferation was assessed by cell counts and thymidine incorporation for up to 72 h. Inhibition of the mevalonate pathway was tested by measuring the levels of unprenylated Rap1A, and apoptosis was examined by the presence of cleaved caspase-8 on western blots. The proliferation rate of breast cancer cells on zoledronate-treated bone was significantly lower compared to cells on control bone. Other bisphosphonates showed a similar inhibitory effect, with an order of potency similar to their clinical potencies. Unprenylated Rap1A accumulated in MCF7 cells on zoledronate-treated bone, suggesting zoledronate acted through the inhibition of the mevalonate pathway. Accumulation of cleaved caspase-8 in MDA-MB-231 cells on bisphosphonate-treated bone indicated increased apoptosis in the cells. In conclusion, bone-bound zoledronate inhibits breast cancer cell proliferation, an activity that may contribute to its clinical anti-tumour effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eilon G, Mundy GR (1978) Direct resorption of bone by human breast cancer cells in vitro. Nature 276:726–728

    CAS  PubMed  Google Scholar 

  2. Galasko CS (1969) The detection of skeletal metastases from mammary cancer by gamma camera scintigraphy. Br J Surg 56:757–764

    CAS  PubMed  Google Scholar 

  3. Aft R, Naughton M, Trinkaus K, Watson M, Ylagan L, Chavez-MacGregor M, Zhai J, Kuo S, Shannon W, Diemer K, Herrmann V, Dietz J, Ali A, Ellis M, Weiss P, Eberlein T, Ma C, Fracasso PM, Zoberi I, Taylor M, Gillanders W, Pluard T, Mortimer J, Weilbaecher K (2010) Effect of zoledronic acid on disseminated tumour cells in women with locally advanced breast cancer: an open label, randomised, phase 2 trial. Lancet Oncol 11:421–428

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Suva LJ, Griffin RJ, Makhoul I (2009) Mechanisms of bone metastases of breast cancer. Endocr Relat Cancer 16:703–713

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Brown JE, Cook RJ, Major P, Lipton A, Saad F, Smith M, Lee KA, Zheng M, Hei YJ, Coleman RE (2005) Bone turnover markers as predictors of skeletal complications in prostate cancer, lung cancer, and other solid tumors. J Natl Cancer Inst 97:59–69

    CAS  PubMed  Google Scholar 

  6. Chlebowski RT, Col N (2011) Bisphosphonates and breast cancer incidence and recurrence. Breast Dis 33:93–101

    CAS  PubMed  Google Scholar 

  7. Liu J, Huang W, Zhou R, Jia S, Tang W, Luo Y, Zhang J (2015) Bisphosphonates in the treatment of patients with metastatic breast, lung, and prostate cancer: a meta-analysis. Medicine 94:e2014

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Lin JH (1996) Bisphosphonates: a review of their pharmacokinetic properties. Bone 18:75–85

    CAS  PubMed  Google Scholar 

  9. Zhang Y, Leon A, Song Y, Studer D, Haase C, Koscielski LA, Oldfield E (2006) Activity of nitrogen-containing and non-nitrogen-containing bisphosphonates on tumor cell lines. J Med Chem 49:5804–5814

    CAS  PubMed  Google Scholar 

  10. van Beek E, Pieterman E, Cohen L, Lowik C, Papapoulos S (1999) Farnesyl pyrophosphate synthase is the molecular target of nitrogen-containing bisphosphonates. Biochem Biophys Res Commun 264:108–111

    PubMed  Google Scholar 

  11. Lehenkari PP, Kellinsalmi M, Napankangas JP, Ylitalo KV, Monkkonen J, Rogers MJ, Azhayev A, Vaananen HK, Hassinen IE (2002) Further insight into mechanism of action of clodronate: inhibition of mitochondrial ADP/ATP translocase by a nonhydrolyzable, adenine-containing metabolite. Mol Pharmacol 61:1255–1262

    CAS  PubMed  Google Scholar 

  12. Gnant M, Mlineritsch B, Schippinger W, Luschin-Ebengreuth G, Postlberger S, Menzel C, Jakesz R, Seifert M, Hubalek M, Bjelic-Radisic V, Samonigg H, Tausch C, Eidtmann H, Steger G, Kwasny W, Dubsky P, Fridrik M, Fitzal F, Stierer M, Rucklinger E, Greil R, Marth C (2009) Endocrine therapy plus zoledronic acid in premenopausal breast cancer. N Engl J Med 360:679–691

    CAS  PubMed  Google Scholar 

  13. Valachis A, Polyzos NP, Coleman RE, Gnant M, Eidtmann H, Brufsky AM, Aft R, Tevaarwerk AJ, Swenson K, Lind P, Mauri D (2013) Adjuvant therapy with zoledronic acid in patients with breast cancer: a systematic review and meta-analysis. Oncologist 18:353–361

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Eidtmann H, de Boer R, Bundred N, Llombart-Cussac A, Davidson N, Neven P, von Minckwitz G, Miller J, Schenk N, Coleman R (2010) Efficacy of zoledronic acid in postmenopausal women with early breast cancer receiving adjuvant letrozole: 36-month results of the ZO-FAST study. Ann Oncol 21:2188–2194

    CAS  PubMed  Google Scholar 

  15. de Boer R, Bundred N, Eidtmann H (2010) The effect of zoledronic acid on aromatase inhibitor-associated bone loss in postmenopausal women with early breast cancer receiving adjuvant letrozole: the ZO-FAST study 5-year final follow-up. In: 33rd annual San Antonio breast cancer symposium, San Antonio, TX

  16. Coleman R, Powles T, Paterson A, Gnant M, Anderson S, Diel I, Gralow J, von Minckwitz G, Moebus V, Bergh J, Pritchard KI, Bliss J, Cameron D, Evans V, Pan H, Peto R, Bradley R, Gray R (2015) Adjuvant bisphosphonate treatment in early breast cancer: meta-analyses of individual patient data from randomised trials. Lancet 386:1353–1361

    Google Scholar 

  17. Tevaarwerk A, Stewart JA, Love R, Binkley NC, Black S, Eickhoff J, Mulkerin DL (2007) Randomized trial to assess bone mineral density effects of zoledronic acid in postmenopausal women with breast cancer. J Clin Oncol 25:19558

    Google Scholar 

  18. Mauri D, Valachis A, Polyzos NP, Tsali L, Mavroudis D, Georgoulias V, Casazza G (2010) Does adjuvant bisphosphonate in early breast cancer modify the natural course of the disease? A meta-analysis of randomized controlled trials. J Natl Compr Cancer Netw JNCCN 8:279–286

    CAS  Google Scholar 

  19. Reid IR, Horne AM, Mihov B, Stewart A, Garratt E, Wong S, Wiessing KR, Bolland MJ, Bastin S, Gamble GD (2018) Fracture prevention with zoledronate in older women with osteopenia. N Engl J Med 379:2407–2416

    CAS  PubMed  Google Scholar 

  20. Coxon JP, Oades GM, Kirby RS, Colston KW (2004) Zoledronic acid induces apoptosis and inhibits adhesion to mineralized matrix in prostate cancer cells via inhibition of protein prenylation. BJU Int 94:164–170

    CAS  PubMed  Google Scholar 

  21. Miwa S, Mizokami A, Keller ET, Taichman R, Zhang J, Namiki M (2005) The bisphosphonate YM529 inhibits osteolytic and osteoblastic changes and CXCR-4-induced invasion in prostate cancer. Can Res 65:8818–8825

    CAS  Google Scholar 

  22. Muller S, Migianu E, Lecouvey M, Kraemer M, Oudar O (2005) Alendronate inhibits proliferation and invasion of human epidermoid carcinoma cells in vitro. Anticancer Res 25:2655–2660

    CAS  PubMed  Google Scholar 

  23. van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Lowik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Investig 98:698–705

    PubMed  Google Scholar 

  24. Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmineralized and mineralized bone extracellular matrices. Can Res 57:3890–3894

    CAS  Google Scholar 

  25. Fromigue O, Lagneaux L, Body JJ (2000) Bisphosphonates induce breast cancer cell death in vitro. J Bone Miner Res 15:2211–2221

    CAS  PubMed  Google Scholar 

  26. Jiang P, Zhang P, Mukthavaram R, Nomura N, Pingle SC, Teng D, Chien S, Guo F, Kesari S (2016) Anti-cancer effects of nitrogen-containing bisphosphonates on human cancer cells. Oncotarget 7:57932–57942

    PubMed  PubMed Central  Google Scholar 

  27. Holen I, Coleman RE (2010) Bisphosphonates as treatment of bone metastases. Curr Pharm Des 16:1262–1271

    CAS  PubMed  Google Scholar 

  28. Stresing V, Daubine F, Benzaid I, Monkkonen H, Clezardin P (2007) Bisphosphonates in cancer therapy. Cancer Lett 257:16–35

    CAS  PubMed  Google Scholar 

  29. Cornish J, Bava U, Callon KE, Bai J, Naot D, Reid IR (2011) Bone-bound bisphosphonate inhibits growth of adjacent non-bone cells. Bone 49:710–716

    CAS  PubMed  Google Scholar 

  30. Iorns E, Drews-Elger K, Ward TM, Dean S, Clarke J, Berry D, Ashry DE, Lippman M (2012) A new mouse model for the study of human breast cancer metastasis. PLoS ONE 7:e47995

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tamura T, Shomori K, Nakabayashi M, Fujii N, Ryoke K, Ito H (2011) Zoledronic acid, a third-generation bisphosphonate, inhibits cellular growth and induces apoptosis in oral carcinoma cell lines. Oncol Rep 25:1139–1143

    CAS  PubMed  Google Scholar 

  32. Reid IR, Brown JP, Burckhardt P, Horowitz Z, Richardson P, Trechsel U, Widmer A, Devogelaer JP, Kaufman JM, Jaeger P, Body JJ, Brandi ML, Broell J, Di Micco R, Genazzani AR, Felsenberg D, Happ J, Hooper MJ, Ittner J, Leb G, Mallmin H, Murray T, Ortolani S, Rubinacci A, Saaf M, Samsioe G, Verbruggen L, Meunier PJ (2002) Intravenous zoledronic acid in postmenopausal women with low bone mineral density. N Engl J Med 346:653–661

    CAS  PubMed  Google Scholar 

  33. Lambrinoudaki I, Vlachou S, Galapi F, Papadimitriou D, Papadias K (2008) Once-yearly zoledronic acid in the prevention of osteoporotic bone fractures in postmenopausal women. Clin Interv Aging 3:445–451

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Kuiper JWP, Forster C, Sun C, Peel S, Glogauer M (2012) Zoledronate and pamidronate depress neutrophil functions and survival in mice. Br J Pharmacol 165:532–539

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Nancollas GH, Tang R, Phipps RJ, Henneman Z, Gulde S, Wu W, Mangood A, Russell RG, Ebetino FH (2006) Novel insights into actions of bisphosphonates on bone: differences in interactions with hydroxyapatite. Bone 38:617–627

    CAS  PubMed  Google Scholar 

  36. Rizzoli R (2011) Bisphosphonates for post-menopausal osteoporosis: are they all the same? QJM 104:281–300

    CAS  PubMed  Google Scholar 

  37. Zekri J, Mansour M, Karim SM (2014) The anti-tumour effects of zoledronic acid. J Bone Oncol 3:25–35

    PubMed  PubMed Central  Google Scholar 

  38. Boissier S, Ferreras M, Peyruchaud O, Magnetto S, Ebetino FH, Colombel M, Delmas P, Delaisse JM, Clezardin P (2000) Bisphosphonates inhibit breast and prostate carcinoma cell invasion, an early event in the formation of bone metastases. Can Res 60:2949–2954

    CAS  Google Scholar 

  39. Grey A, Reid IR (2006) Differences between the bisphosphonates for the prevention and treatment of osteoporosis. Ther Clin Risk Manag 2:77–86

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo R-T, Cao R, Liang P-H, Ko T-P, Chang T-H, Hudock MP, Jeng W-Y, Chen CKM, Zhang Y, Song Y, Kuo C-J, Yin F, Oldfield E, Wang AHJ (2007) Bisphosphonates target multiple sites in both cis- and trans-prenyltransferases. Proc Natl Acad Sci USA 104:10022–10027

    CAS  PubMed  Google Scholar 

  41. Mullen PJ, Yu R, Longo J, Archer MC, Penn LZ (2016) The interplay between cell signalling and the mevalonate pathway in cancer. Nat Rev Cancer 16:718–731

    CAS  PubMed  Google Scholar 

  42. Koto K, Horie N, Kimura S, Murata H, Sakabe T, Matsui T, Watanabe M, Adachi S, Maekawa T, Fushiki S, Kubo T (2009) Clinically relevant dose of zoledronic acid inhibits spontaneous lung metastasis in a murine osteosarcoma model. Cancer Lett 274:271–278

    CAS  PubMed  Google Scholar 

  43. Koto K, Murata H, Kimura S, Horie N, Matsui T, Nishigaki Y, Ryu K, Sakabe T, Itoi M, Ashihara E, Maekawa T, Fushiki S, Kubo T (2010) Zoledronic acid inhibits proliferation of human fibrosarcoma cells with induction of apoptosis, and shows combined effects with other anticancer agents. Oncol Rep 24:233–239

    CAS  PubMed  Google Scholar 

  44. Di Salvatore M, Orlandi A, Bagala C, Quirino M, Cassano A, Astone A, Barone C (2011) Anti-tumour and anti-angiogenetic effects of zoledronic acid on human non-small-cell lung cancer cell line. Cell Prolif 44:139–146

    PubMed  Google Scholar 

  45. Saad F, Gleason DM, Murray R, Tchekmedyian S, Venner P, Lacombe L, Chin JL, Vinholes JJ, Goas JA, Chen B (2002) A randomized, placebo-controlled trial of zoledronic acid in patients with hormone-refractory metastatic prostate carcinoma. J Natl Cancer Inst 94:1458–1468

    CAS  PubMed  Google Scholar 

  46. Mystakidou K, Katsouda E, Parpa E, Kelekis A, Galanos A, Vlahos L (2005) Randomized, open label, prospective study on the effect of zoledronic acid on the prevention of bone metastases in patients with recurrent solid tumors that did not present with bone metastases at baseline. Med Oncol 22:195–201

    CAS  PubMed  Google Scholar 

  47. Rack B, Juckstock J, Genss EM, Schoberth A, Schindlbeck C, Strobl B, Heinrigs M, Rammel G, Zwingers T, Sommer H, Friese K, Janni W (2010) Effect of zoledronate on persisting isolated tumour cells in patients with early breast cancer. Anticancer Res 30:1807–1813

    CAS  PubMed  Google Scholar 

  48. Jagdev SP, Coleman RE, Shipman CM, Rostami HA, Croucher PI (2001) The bisphosphonate, zoledronic acid, induces apoptosis of breast cancer cells: evidence for synergy with paclitaxel. Br J Cancer 84:1126–1134

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Neville-Webbe HL, Coleman RE, Holen I (2010) Combined effects of the bisphosphonate, zoledronic acid and the aromatase inhibitor letrozole on breast cancer cells in vitro: evidence of synergistic interaction. Br J Cancer 102:1010

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Senaratne SG, Pirianov G, Mansi JL, Arnett TR, Colston KW (2000) Bisphosphonates induce apoptosis in human breast cancer cell lines. Br J Cancer 82:1459–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Hiraga T, Williams PJ, Mundy GR, Yoneda T (2001) The bisphosphonate ibandronate promotes apoptosis in MDA-MB-231 human breast cancer cells in bone metastases. Can Res 61:4418–4424

    CAS  Google Scholar 

  52. Senaratne SG, Mansi JL, Colston KW (2002) The bisphosphonate zoledronic acid impairs Ras membrane [correction of impairs membrane] localisation and induces cytochrome c release in breast cancer cells. Br J Cancer 86:1479–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Ibrahim T, Mercatali L, Sacanna E, Tesei A, Carloni S, Ulivi P, Liverani C, Fabbri F, Zanoni M, Zoli W, Amadori D (2012) Inhibition of breast cancer cell proliferation in repeated and non-repeated treatment with zoledronic acid. Cancer Cell Int 12:48

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Dhar S, Chiplunkar SV (2010) Lysis of aminobisphosphonate-sensitized MCF-7 breast tumor cells by Vγ9 Vδ2 T cells. Cancer Immun 10:10

    PubMed  PubMed Central  Google Scholar 

  55. Lan YC, Chang CL, Sung MT, Yin PH, Hsu CC, Wang KC, Lee HC, Tseng LM, Chi CW (2013) Zoledronic acid-induced cytotoxicity through endoplasmic reticulum stress triggered REDD1-mTOR pathway in breast cancer cells. Anticancer Res 33:3807–3814

    CAS  PubMed  Google Scholar 

  56. Gschwantler-Kaulich D, Weingartshofer S, Grunt TW, Mairhofer M, Tan Y, Gamper J, Singer CF (2017) Estradiol impairs the antiproliferative and proapoptotic effect of zoledronic acid in hormone sensitive breast cancer cells in vitro. PLoS ONE 12:e0185566

    PubMed  PubMed Central  Google Scholar 

  57. Merrell MA, Wakchoure S, Lehenkari PP, Harris KW, Selander KS (2007) Inhibition of the mevalonate pathway and activation of p38 MAP kinase are independently regulated by nitrogen-containing bisphosphonates in breast cancer cells. Eur J Pharmacol 570:27–37

    CAS  PubMed  Google Scholar 

  58. Mansouri M, Mirzaei SA, Lage H, Mousavi SS, Elahian F (2014) The cell cycle arrest and the anti-invasive effects of nitrogen-containing bisphosphonates are not mediated by DBF4 in breast cancer cells. Biochimie 99:71–76

    CAS  PubMed  Google Scholar 

  59. Romani AA, Desenzani S, Morganti MM, La Monica S, Borghetti AF, Soliani P (2009) Zoledronic acid determines S-phase arrest but fails to induce apoptosis in cholangiocarcinoma cells. Biochem Pharmacol 78:133–141

    CAS  PubMed  Google Scholar 

  60. Okamoto S, Jiang Y, Kawamura K, Shingyoji M, Tada Y, Sekine I, Takiguchi Y, Tatsumi K, Kobayashi H, Shimada H, Hiroshima K, Tagawa M (2014) Zoledronic acid induces apoptosis and S-phase arrest in mesothelioma through inhibiting Rab family proteins and topoisomerase II actions. Cell Death Dis 5:1517

    Google Scholar 

  61. Iguchi T, Miyakawa Y, Yamamoto K, Kizaki M, Ikeda Y (2003) Nitrogen-containing bisphosphonates induce S-phase cell cycle arrest and apoptosis of myeloma cells by activating MAPK pathway and inhibiting mevalonate pathway. Cell Signal 15:719–727

    CAS  PubMed  Google Scholar 

  62. Chang JUN, Wang WEI, Zhang HUI, Hu Y, Yin Z (2012) Bisphosphonates regulate cell proliferation, apoptosis and pro-osteoclastic expression in MG-63 human osteosarcoma cells. Oncol Lett 4:299–304

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Manzano-Moreno FJ, Ramos-Torrecillas J, De Luna-Bertos E, Ruiz C, Garcia-Martinez O (2015) High doses of bisphosphonates reduce osteoblast-like cell proliferation by arresting the cell cycle and inducing apoptosis. J Cranio-Maxillo-Fac Surg 43:396–401

    Google Scholar 

  64. Forsea AM, Müller C, Riebeling C, Orfanos CE, Geilen CC (2004) Nitrogen-containing bisphosphonates inhibit cell cycle progression in human melanoma cells. Br J Cancer 91:803–810

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Ory B, Blanchard F, Battaglia S, Gouin F, Redini F, Heymann D (2007) Zoledronic acid activates the DNA S-phase checkpoint and induces osteosarcoma cell death characterized by apoptosis-inducing factor and endonuclease-G translocation independently of p53 and retinoblastoma status. Mol Pharmacol 71:333–343

    CAS  PubMed  Google Scholar 

  66. Matsumoto S, Kimura S, Segawa H, Kuroda J, Yuasa T, Sato K, Nogawa M, Tanaka F, Maekawa T, Wada H (2005) Efficacy of the third-generation bisphosphonate, zoledronic acid alone and combined with anti-cancer agents against small cell lung cancer cell lines. Lung Cancer 47:31–39

    PubMed  Google Scholar 

  67. Li YY, Chang JW, Chou WC, Liaw CC, Wang HM, Huang JS, Wang CH, Yeh KY (2008) Zoledronic acid is unable to induce apoptosis, but slows tumor growth and prolongs survival for non-small-cell lung cancers. Lung Cancer 59:180–191

    PubMed  Google Scholar 

  68. Ohnuki H, Izumi K, Terada M, Saito T, Kato H, Suzuki A, Kawano Y, Nozawa-Inoue K, Takagi R, Maeda T (2012) Zoledronic acid induces S-phase arrest via a DNA damage response in normal human oral keratinocytes. Arch Oral Biol 57:906–917

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Mr. Greg Gamble for providing statistical advice and Dr. Yi Lance Xu for providing antibodies for Western blots. This study was funded by the Health Research Council of New Zealand (Grant 15/576 – Reid Mechanisms and Management of Musculoskeletal Disease).

Funding

This study was funded by the Health Research Council of New Zealand (Grant 15/576 – Reid Mechanisms and Management of Musculoskeletal Disease).

Author information

Authors and Affiliations

Authors

Contributions

YEP and JML performed the experimental research and analysis. UB contributed to the experimental work. JC, DN and IRR designed the study and the experimental plan. YEP prepared the first draft of the manuscript, DN, JC, UB, JML and IRR provided critical feedback and contributed to the final version.

Corresponding author

Correspondence to Ian R. Reid.

Ethics declarations

Conflict of interest

Dr. Reid reports grants and personal fees from Amgen, personal fees and non-financial support from Novartis, outside the submitted work. Young-Eun Park, Usha Bava, Jian-ming Lin, Jillian Cornish and Dorit Naot declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, YE., Bava, U., Lin, Jm. et al. Bone-Bound Bisphosphonates Inhibit Proliferation of Breast Cancer Cells. Calcif Tissue Int 105, 497–505 (2019). https://doi.org/10.1007/s00223-019-00590-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00590-5

Keywords

Navigation