Skip to main content
Log in

Bazedoxifene Ameliorates Homocysteine-Induced Apoptosis via NADPH Oxidase-Interleukin 1β and 6 Pathway in Osteocyte-like Cells

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Homocysteine (Hcy) increases oxidation and inflammation; however, the mechanism of Hcy-induced bone fragility remains unclear. Because selective estrogen modulators (SERMs) have an anti-oxidative effect, SERMs may rescue the Hcy-induced bone fragility. We aimed to examine whether oxidative stress and pro-inflammatory cytokines such as interleukin (IL)-1β and IL-6 are involved in the Hcy-induced apoptosis of osteocytes and whether bazedoxifene (BZA) inhibits the detrimental effects of Hcy. We used mouse osteocyte-like cell lines MLO-Y4-A2 and Ocy454. Apoptosis was examined by DNA fragmentation ELISA and TUNEL staining, and gene expression was evaluated by real-time PCR. Hcy 5 mM significantly increased expressions of NADPH oxidase (Nox)1, Nox2, IL-1β, and IL-6 as well as apoptosis in MLO-Y4-A2 cells. Nox inhibitors, diphenyleneiodonium chloride and apocynin, significantly suppressed Hcy-induced IL-1β and IL-6 expressions. In contrast, an IL-1β receptor antagonist and an IL-6 receptor monoclonal antibody had no effects on Hcy-induced Nox1 and Nox2 expressions, but significantly rescued Hcy-induced apoptosis. BZA (1 nM–1 μM) and 17β estradiol 100 nM significantly rescued Hcy-induced apoptosis, while an estrogen receptor blocker ICI 182,780 reversed the effects of BZA and 17β estradiol. BZA also rescued Hcy-induced apoptosis of Ocy454 cell, and ICI canceled the effect of BZD. Moreover, BZA significantly ameliorated Hcy-induced expressions of Nox1, Nox2, IL-1β, and IL-6, and ICI canceled the effects of BZA on their expressions. Hcy increases apoptosis through stimulating Nox 1 and Nox 2-IL-1β and IL-6 expressions in osteocyte-like cells. BZA inhibits the detrimental effects of Hcy on osteocytes via estrogen receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Hcy:

Homocysteine

BZA:

Bazedoxifene acetate

Nox:

NADPH oxidase

DM:

Diabetes mellitus

T2DM:

Type 2 diabetes mellitus

BMD:

Bone mineral density

α-MEM:

α-minimum essential medium

SERM:

Selective estrogen receptor modulators

DPI:

Diphenyleneiodonium chloride

Apo:

Apocinin

References

  1. Johnell O, Kanis JA, Oden A, Sernbo I, Redlund-Johnell I, Petterson C, De Laet C, Jonsson B (2004) Mortality after osteoporotic fractures. Osteoporos Int 15:38–42

    Article  CAS  PubMed  Google Scholar 

  2. Selhub J, Jacques PF, Wilson PW, Rush D, Rosenberg IH (1993) Vitamin status and intake as primary determinants of homocysteinemia in an elderly population. JAMA 270:2693–2698

    Article  CAS  PubMed  Google Scholar 

  3. McLean RR, Jacques PF, Selhub J, Tucker KL, Samelson EJ, Broe KE, Hannan MT, Cupples LA, Kiel DP (2004) Homocysteine as a predictive factor for hip fracture in older persons. N Engl J Med 350:2042–2049

    Article  CAS  PubMed  Google Scholar 

  4. van Meurs JB, Dhonukshe-Rutten RA, Pluijm SM, van der Klift M, de Jonge R, Lindemans J, de Groot LC, Hofman A, Witteman JC, van Leeuwen JP, Breteler MM, Lips P, Pols HA, Uitterlinden AG (2004) Homocysteine levels and the risk of osteoporotic fracture. N Engl J Med 350:2033–2041

    Article  PubMed  Google Scholar 

  5. Yang J, Hu X, Zhang Q, Cao H, Wang J, Liu B (2012) Homocysteine level and risk of fracture: a meta-analysis and systematic review. Bone 51:376–382

    Article  CAS  PubMed  Google Scholar 

  6. Li J, Zhang H, Yan L, Xie M, Chen J (2014) Fracture is additionally attributed to hyperhomocysteinemia in men and premenopausal women with type 2 diabetes. J Diabetes Investig 5:236–241

    Article  CAS  PubMed  Google Scholar 

  7. Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, Jamal SA, Black DM, Cummings SR (2001) Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 86:32–38

    Article  CAS  PubMed  Google Scholar 

  8. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes–a meta-analysis. Osteoporos Int 18:427–444

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto M, Yamaguchi T, Yamauchi M, Kaji H, Sugimoto T (2009) Diabetic patients have an increased risk of vertebral fractures independent of BMD or diabetic complications. J Bone Mineral Res 24:702–709

    Article  CAS  Google Scholar 

  10. Kanani PM, Sinkey CA, Browning RL, Allaman M, Knapp HR, Haynes WG (1999) Role of oxidant stress in endothelial dysfunction produced by experimental hyperhomocyst(e)inemia in humans. Circulation 100:1161–1168

    Article  CAS  PubMed  Google Scholar 

  11. Hoogeveen EK, Kostense PJ, Beks PJ, Mackaay AJ, Jakobs C, Bouter LM, Heine RJ, Stehouwer CD (1998) Hyperhomocysteinemia is associated with an increased risk of cardiovascular disease, especially in non-insulin-dependent diabetes mellitus: a population-based study. Arterioscler Thromb Vasc Biol 18:133–138

    Article  CAS  PubMed  Google Scholar 

  12. Yun J, Kim JY, Kim OY, Jang Y, Chae JS, Kwak JH, Lim HH, Park HY, Lee SH, Lee JH (2011) Associations of plasma homocysteine level with brachial-ankle pulse wave velocity, LDL atherogenicity, and inflammation profile in healthy men. Nutr Metab Cardiovasc Dis NMCD 21:136–143

    Article  CAS  PubMed  Google Scholar 

  13. McCarty MF, O’Keefe JH, DiNicolantonio JJ (2017) Interleukin-1beta may act on hepatocytes to boost plasma homocysteine—the increased cardiovascular risk associated with elevated homocysteine may be mediated by this cytokine. Med Hypotheses 102:78–81

    Article  CAS  PubMed  Google Scholar 

  14. Takeno A, Kanazawa I, Tanaka K, Notsu M, Yokomoto M, Yamaguchi T, Sugimoto T (2015) Activation of AMP-activated protein kinase protects against homocysteine-induced apoptosis of osteocytic MLO-Y4 cells by regulating the expressions of NADPH oxidase 1 (Nox1) and Nox2. Bone 77:135–141

    Article  CAS  PubMed  Google Scholar 

  15. Kanazawa I, Tomita T, Miyazaki S, Ozawa E, Yamamoto LA, Sugimoto T (2017) Bazedoxifene ameliorates homocysteine-induced apoptosis and accumulation of advanced glycation end products by reducing oxidative stress in MC3T3-E1 cells. Calcif Tissue Int 100:286–297

    Article  CAS  PubMed  Google Scholar 

  16. Ellis AG, Reginster JY, Luo X, Bushmakin AG, Williams R, Sutradhar S, Mirkin S, Jansen JP (2014) Indirect comparison of bazedoxifene vs oral bisphosphonates for the prevention of vertebral fractures in postmenopausal osteoporotic women. Curr Med Res Opin 30:1617–1626

    Article  CAS  PubMed  Google Scholar 

  17. Nakamura T, Imai Y, Matsumoto T, Sato S, Takeuchi K, Igarashi K, Harada Y, Azuma Y, Krust A, Yamamoto Y, Nishina H, Takeda S, Takayanagi H, Metzger D, Kanno J, Takaoka K, Martin TJ, Chambon P, Kato S (2007) Estrogen prevents bone loss via estrogen receptor alpha and induction of Fas ligand in osteoclasts. Cell 130:811–823

    Article  CAS  PubMed  Google Scholar 

  18. Morita M, Sato Y, Iwasaki R, Kobayashi T, Watanabe R, Oike T, Miyamoto K, Toyama Y, Matsumoto M, Nakamura M, Kawana H, Nakagawa T, Miyamoto T (2016) Selective estrogen receptor modulators suppress hif1alpha protein accumulation in mouse osteoclasts. PLoS ONE 11:e0165922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mann V, Huber C, Kogianni G, Collins F, Noble B (2007) The antioxidant effect of estrogen and Selective Estrogen Receptor Modulators in the inhibition of osteocyte apoptosis in vitro. Bone 40:674–684

    Article  CAS  Google Scholar 

  20. van Essen HW, Holzmann PJ, Blankenstein MA, Lips P, Bravenboer N (2007) Effect of raloxifene treatment on osteocyte apoptosis in postmenopausal women. Calcif Tissue Int 81:183–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bellido T (2014) Osteocyte-driven bone remodeling. Calcif Tissue Int 94:25–34

    Article  CAS  PubMed  Google Scholar 

  22. Tomkinson A, Reeve J, Shaw RW, Noble BS (1997) The death of osteocytes via apoptosis accompanies estrogen withdrawal in human bone. J Clin Endocrinol Metab 82:3128–3135

    CAS  PubMed  Google Scholar 

  23. Tomkinson A, Gevers EF, Wit JM, Reeve J, Noble BS (1998) The role of estrogen in the control of rat osteocyte apoptosis. J Bone Miner Res 13:1243–1250

    Article  CAS  PubMed  Google Scholar 

  24. Notsu M, Kanazawa I, Takeno A, Yokomoto-Umakoshi M, Tanaka KI, Yamaguchi T, Sugimoto T (2017) Advanced glycation end product 3 (AGE3) increases apoptosis and the expression of sclerostin by stimulating TGF-beta expression and secretion in osteocyte-like MLO-Y4-A2 cells. Calcif Tissue Int 100:402–411

    Article  CAS  PubMed  Google Scholar 

  25. Welshons WV, Wolf MF, Murphy CS, Jordan VC (1988) Estrogenic activity of phenol red. Mol Cell Endocrinol 57:169–178

    Article  CAS  PubMed  Google Scholar 

  26. Spatz JM, Wein MN, Gooi JH, Qu Y, Garr JL, Liu S, Barry KJ, Uda Y, Lai F, Dedic C, Balcells-Camps M, Kronenberg HM, Babij P, Pajevic PD (2015) The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J Biol Chem 290:16744–16758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  Google Scholar 

  28. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T (2010) Fasudil hydrochloride induces osteoblastic differentiation of stromal cell lines, C3H10T1/2 and ST2, via bone morphogenetic protein-2 expression. Endocr J 57:415–421

    Article  CAS  PubMed  Google Scholar 

  29. Gori AM, Corsi AM, Fedi S, Gazzini A, Sofi F, Bartali B, Bandinelli S, Gensini GF, Abbate R, Ferrucci L (2005) A proinflammatory state is associated with hyperhomocysteinemia in the elderly. Am J Clin Nutr 82:335–341

    Article  CAS  PubMed  Google Scholar 

  30. Amarasekara DS, Yu J, Rho J (2015) Bone loss triggered by the cytokine network in inflammatory autoimmune diseases. J Immunol Res 2015:832127

    Article  PubMed  PubMed Central  Google Scholar 

  31. Thaler R, Agsten M, Spitzer S, Paschalis EP, Karlic H, Klaushofer K, Varga F (2011) Homocysteine suppresses the expression of the collagen cross-linker lysyl oxidase involving IL-6, Fli1, and epigenetic DNA methylation. J Biol Chem 286:5578–5588

    Article  CAS  PubMed  Google Scholar 

  32. Zhang Y, He Y, Zong Y, Guo J, Sun L, Ma Y, Dong W, Gui L (2015) 17beta-estradiol attenuates homocysteine-induced oxidative stress and inflammatory response as well as MAPKs cascade via activating PI3-K/Akt signal transduction pathway in Raw 264.7 cells. Acta Biochim Biophys Sin 47:65–72

    Article  CAS  PubMed  Google Scholar 

  33. Arai M, Shibata Y, Pugdee K, Abiko Y, Ogata Y (2007) Effects of reactive oxygen species (ROS) on antioxidant system and osteoblastic differentiation in MC3T3-E1 cells. IUBMB Life 59:27–33

    Article  CAS  PubMed  Google Scholar 

  34. Saito M, Marumo K, Soshi S, Kida Y, Ushiku C, Shinohara A (2010) Raloxifene ameliorates detrimental enzymatic and nonenzymatic collagen cross-links and bone strength in rabbits with hyperhomocysteinemia. Osteoporos Int 21:655–666

    Article  CAS  PubMed  Google Scholar 

  35. Johnell O, Kanis JA, Black DM, Balogh A, Poor G, Sarkar S, Zhou C, Pavo I (2004) Associations between baseline risk factors and vertebral fracture risk in the Multiple Outcomes of Raloxifene Evaluation (MORE) Study. J Bone Miner Res 19:764–772

    Article  CAS  PubMed  Google Scholar 

  36. Andersson A, Bernardi AI, Stubelius A, Nurkkala-Karlsson M, Ohlsson C, Carlsten H, Islander U (2016) Selective oestrogen receptor modulators lasofoxifene and bazedoxifene inhibit joint inflammation and osteoporosis in ovariectomised mice with collagen-induced arthritis. Rheumatol (Oxf) 55:553–563

    CAS  Google Scholar 

  37. Gianni W, Ricci A, Gazzaniga P, Brama M, Pietropaolo M, Votano S, Patane F, Agliano AM, Spera G, Marigliano V, Ammendola S, Agnusdei D, Migliaccio S, Scandurra R (2004) Raloxifene modulates interleukin-6 and tumor necrosis factor-alpha synthesis in vivo: results from a pilot clinical study. J Clin Endocrinol Metab 89:6097–6099

    Article  CAS  PubMed  Google Scholar 

  38. Komm BS, Kharode YP, Bodine PV, Harris HA, Miller CP, Lyttle CR (2005) Bazedoxifene acetate: a selective estrogen receptor modulator with improved selectivity. Endocrinology 146:3999–4008

    Article  CAS  PubMed  Google Scholar 

  39. Jaber BM, Gao T, Huang L, Karmakar S, Smith CL (2006) The pure estrogen receptor antagonist ICI 182,780 promotes a novel interaction of estrogen receptor-alpha with the 3′,5′-cyclic adenosine monophosphate response element-binding protein-binding protein/p300 coactivators. Mol Endocrinol 20:2695–2710

    Article  CAS  PubMed  Google Scholar 

  40. Jover-Mengual T, Castello-Ruiz M, Burguete MC, Jorques M, Lopez-Morales MA, Aliena-Valero A, Jurado-Rodriguez A, Perez S, Centeno JM, Miranda FJ, Alborch E, Torregrosa G, Salom JB (2017) Molecular mechanisms mediating the neuroprotective role of the selective estrogen receptor modulator, bazedoxifene, in acute ischemic stroke: a comparative study with 17beta-estradiol. J Steroid Biochem Mol Biol 171:296–304

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study had funding support from Pfizer. Pfizer did not affect the study protocol, interpretation of the results, or discussion. Authors’ roles: MN and IK were responsible for designing and conducting the study. MN performed the experiments and analyzed the data. AT and KT contributed equipment/materials. MN and IK wrote the manuscript. TS reviewed and edited the manuscript. All authors approved the final version. IK takes responsibility for the integrity of the data analysis. The authors thank Keiko Nagira for technical assistance.

Funding

IK and TS have received lecture fees from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippei Kanazawa.

Ethics declarations

Conflict of interest

Masakazu Notsu, Ippei Kanazawa, Ayumu Takeno, Ken-ichiro Tanaka, and Toshitsugu Sugimoto declare that they have no competing interests.

Human and Animal Rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Notsu, M., Kanazawa, I., Takeno, A. et al. Bazedoxifene Ameliorates Homocysteine-Induced Apoptosis via NADPH Oxidase-Interleukin 1β and 6 Pathway in Osteocyte-like Cells. Calcif Tissue Int 105, 446–457 (2019). https://doi.org/10.1007/s00223-019-00580-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-019-00580-7

Keywords

Navigation