Skip to main content

Advertisement

Log in

All-Trans Retinoic Acid Promotes Osteogenic Differentiation and Bone Consolidation in a Rat Distraction Osteogenesis Model

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Distraction osteogenesis (DO) is used to treat specific disorders associated with growth abnormalities and/or loss of bone stock secondary to trauma or disease. However, a high rate of complications and discomfort hamper its further application in clinical practice. Here, we investigated the effects of all-trans retinoic acid (ATRA) on osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (rBMSCs) and bone consolidation in a rat DO model. Different doses of ATRA were used to treat rBMSCs. Cell viability and osteogenic differentiation were assessed using CCK-8 and alkaline phosphatase staining, respectively. The mRNA expression of osteogenic differentiation-genes (including ALP, Runx2, OCN, OPN, OSX, and BMP2) and angiogenic genes (including VEGF, HIF-1, FLK-2, ANG-2, and ANG-4) were determined by quantitative real-time PCR analysis. Further, we locally injected ATRA or PBS into the gap in the rat DO model every 3 days until termination. X-rays, micro-computed tomography (Micro-CT), mechanical testing, and immunohistochemistry stains were used to evaluate the quality of the regenerates. ATRA promoted osteogenic differentiation of rBMSCs. Moreover, ATRA elevated the mRNA expression levels of osteogenic differentiation-genes and angiogenic genes. In the rat model, new bone properties of bone volume/total tissue volume and mechanical strength were significantly higher in the ATRA-treatment group. Micro-CT examination showed more mineralized bone after the ATRA-treatment, and immunohistochemistry demonstrated more new bone formation after ATRA-treatment than that in the PBS group. In conclusion, as a readily available and very cost effective bio-source, ATRA may be a novel therapeutic method to enhance bone consolidation in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Carvalho RS, Einhorn TA, Lehmann W, Edgar C, Al-Yamani A, Apazidis A, Pacicca D, Clemens TL, Gerstenfeld LC (2004) The role of angiogenesis in a murine tibial model of distraction osteogenesis. Bone 34:849–861

    Article  PubMed  CAS  Google Scholar 

  2. Ilizarov GA (1989) The tension-stress effect on the genesis and growth of tissues: part II. The influence of the rate and frequency of distraction. Clin Orthop Relat Res 239:263–285

    Google Scholar 

  3. El-Alfy B, El-Mowafi H, El-Moghazy N (2010) Distraction osteogenesis in management of composite bone and soft tissue defects. Int Orthop 34:115–118

    Article  PubMed  Google Scholar 

  4. Sugawara Y, Uda H, Sarukawa S, Sunaga A (2010) Multidirectional cranial distraction osteogenesis for the treatment of craniosynostosis. Plast Reconstr Surg 126:1691–1698

    Article  PubMed  CAS  Google Scholar 

  5. Abbaspour A, Takahashi M, Sairyo K, Takata S, Yukata K, Inui A, Yasui N (2009) Optimal increase in bone mass by continuous local infusion of alendronate during distraction osteogenesis in rabbits. Bone 44:917–923

    Article  PubMed  CAS  Google Scholar 

  6. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  PubMed  CAS  Google Scholar 

  7. Timmers L, Lim SK, Arslan F, Armstrong JS, Hoefer IE, Doevendans PA, Piek JJ, El Oakley RM, Choo A, Lee CN, Pasterkamp G, de Kleijn DP (2007) Reduction of myocardial infarct size by human mesenchymal stem cell conditioned medium. Stem Cell Res 1:129–137

    Article  PubMed  CAS  Google Scholar 

  8. Yamagata M, Yamamoto A, Kako E, Kaneko N, Matsubara K, Sakai K, Sawamoto K, Ueda M (2013) Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44:551–554

    Article  PubMed  Google Scholar 

  9. Kotobuki N, Katsube Y, Katou Y, Tadokoro M, Hirose M, Ohgushi H (2008) In vivo survival and osteogenic differentiation of allogeneic rat bone marrow mesenchymal stem cells (MSCs). Cell Transplant 17:705–712

    Article  PubMed  Google Scholar 

  10. Kinnaird T, Stabile E, Burnett MS, Shou M, Lee CW, Barr S, Fuchs S, Epstein SE (2004) Local delivery of marrow-derived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109:1543–1549

    Article  PubMed  CAS  Google Scholar 

  11. Lemaire V, Tobin FL, Greller LD, Cho CR, Suva LJ (2004) Modeling the interactions between osteoblast and osteoclast activities in bone remodeling. J Theor Biol 229:293–309

    Article  PubMed  CAS  Google Scholar 

  12. Feng X, Tuo X, Chen F, Wu W, Ding Y, Duan Y, Lin Z (2008) Ultrastructural cell response to tension stress during mandibular distraction osteogenesis. Br J Oral Maxillofac Surg 46:527–532

    Article  PubMed  Google Scholar 

  13. Shi JH, Zheng B, Chen S, Ma GY, Wen JK (2012) Retinoic acid receptor alpha mediates all-trans-retinoic acid-induced Klf4 gene expression by regulating Klf4 promoter activity in vascular smooth muscle cells. J Biol Chem 287:10799–10811

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Axel DI, Frigge A, Dittmann J, Runge H, Spyridopoulos I, Riessen R, Viebahn R, Karsch KR (2001) All-trans retinoic acid regulates proliferation, migration, differentiation, and extracellular matrix turnover of human arterial smooth muscle cells. Cardiovasc Res 49:851–862

    Article  PubMed  CAS  Google Scholar 

  15. Chronopoulos A, Robinson B, Sarper M, Cortes E, Auernheimer V, Lachowski D, Attwood S, Garcia R, Ghassemi S, Fabry B, Del Rio Hernandez A (2016) ATRA mechanically reprograms pancreatic stellate cells to suppress matrix remodelling and inhibit cancer cell invasion. Nat Commun 7:12630

    Article  PubMed  PubMed Central  Google Scholar 

  16. Miano JM, Kelly LA, Artacho CA, Nuckolls TA, Piantedosi R, Blaner WS (1998) all-Trans-retinoic acid reduces neointimal formation and promotes favorable geometric remodeling of the rat carotid artery after balloon withdrawal injury. Circulation 98:1219–1227

    Article  PubMed  CAS  Google Scholar 

  17. Lee CW, Park SJ, Park SW, Kim JJ, Hong MK, Song JK (2000) All-trans-retinoic acid attenuates neointima formation with acceleration of reendothelialization in balloon-injured rat aorta. J Korean Med Sci 15:31–36

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ishii H, Horie S, Kizaki K, Kazama M (1992) Retinoic acid counteracts both the downregulation of thrombomodulin and the induction of tissue factor in cultured human endothelial cells exposed to tumor necrosis factor. Blood 80:2556–2562

    PubMed  CAS  Google Scholar 

  19. Zhang S, Chen X, Hu Y, Wu J, Cao Q, Chen S, Gao Y (2016) All-trans retinoic acid modulates Wnt3A-induced osteogenic differentiation of mesenchymal stem cells via activating the PI3K/AKT/GSK3beta signalling pathway. Mol Cell Endocrinol 422:243–253

    Article  PubMed  CAS  Google Scholar 

  20. Bi W, Gu Z, Zheng Y, Wang L, Guo J, Wu G (2013) Antagonistic and synergistic effects of bone morphogenetic protein 2/7 and all-trans retinoic acid on the osteogenic differentiation of rat bone marrow stromal cells. Dev Growth Differ 55:744–754

    Article  PubMed  CAS  Google Scholar 

  21. Yang QJ, Zhou LY, Mu YQ, Zhou QX, Luo JY, Cheng L, Deng ZL, He TC, Haydon RC, He BC (2012) All-trans retinoic acid inhibits tumor growth of human osteosarcoma by activating Smad signaling-induced osteogenic differentiation. Int J Oncol 41:153–160

    PubMed  CAS  Google Scholar 

  22. Xu J, Sun Y, Wu T, Wang B, Liu Y, Zhang J, Lee WY, Kang Q, Chai Y, Li G (2017) Porcine brain extract promotes osteogenic differentiation of bone marrow derived mesenchymal stem cells and bone consolidation in a rat distraction osteogenesis model. PLoS ONE 12:e0187362

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Xu L, Song C, Ni M, Meng F, Xie H, Li G (2012) Cellular retinol-binding protein 1 (CRBP-1) regulates osteogenenesis and adipogenesis of mesenchymal stem cells through inhibiting RXRα-induced beta-catenin degradation. Int J Biochem Cell Biol 44:612–619

    Article  PubMed  CAS  Google Scholar 

  24. ICenci RA, Silveira VS, Mayer L, Oliveira HW, Moraes JFDD, Oliveira MGD (2015) Analysis by means of cone-beam computed tomography, bone density and X-ray beam attenuation of rabbit mandibles subjected to low-level laser therapy during distraction osteogenesis. Revista de Ciências Médicas e Biológicas. Salvador 14:30–35

    Article  Google Scholar 

  25. Sun Y, Xu L, Huang S, Hou Y, Liu Y, Chan KM, Pan XH, Li G (2015) mir-21 overexpressing mesenchymal stem cells accelerate fracture healing in a rat closed femur fracture model. BioMed Res Int. https://doi.org/10.1155/2015/412327

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Müller R (2010) Guidelines for assessment of bone microstructure in rodents using micro–computed tomography. J Bone Miner Res 25:1468–1486

    Article  PubMed  Google Scholar 

  27. Xu J, Wang B, Sun Y, Wu T, Liu Y, Zhang J, Lee WY, Pan X, Chai Y, Li G (2016) Human fetal mesenchymal stem cell secretome enhances bone consolidation in distraction osteogenesis. Stem Cell Res Ther 7:134

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Fujio M, Xing Z, Sharabi N, Xue Y, Yamamoto A, Hibi H, Ueda M, Fristad I, Mustafa K (2017) Conditioned media from hypoxic-cultured human dental pulp cells promotes bone healing during distraction osteogenesis. J Tissue Eng Regener Med 11:2116–2126

    Article  CAS  Google Scholar 

  29. Shi H, Yuan L, Yang H, Zang A (2017) The mechanism of all-trans retinoic acid in the regulation of apelin expression in vascular endothelial cells. Biosci Rep. https://doi.org/10.1042/BSR20170684

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tolar J, Le Blanc K, Keating A, Blazar BR (2010) Concise review: hitting the right spot with mesenchymal stromal cells. Stem Cells 28:1446–1455

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zimmermann CE, Gierloff M, Hedderich J, Acil Y, Wiltfang J, Terheyden H (2011) Survival of transplanted rat bone marrow-derived osteogenic stem cells in vivo. Tissue Eng A 17:1147–1156

    Article  Google Scholar 

  32. Harrison G, Shapiro IM, Golub EE (1995) The phosphatidylinositol-glycolipid anchor on alkaline phosphatase facilitates mineralization initiation in vitro. J Bone Min Res 10:568–573

    Article  CAS  Google Scholar 

  33. Bais MV, Wigner N, Young M, Toholka R, Graves DT, Morgan EF, Gerstenfeld LC, Einhorn TA (2009) BMP2 is essential for post natal osteogenesis but not for recruitment of osteogenic stem cells. Bone 45:254–266

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Komori T (2003) Requisite roles of Runx2 and Cbfb in skeletal development. J Bone Miner Metab 21:193–197

    PubMed  CAS  Google Scholar 

  35. Winet H (1996) The role of microvasculature in normal and perturbed bone healing as revealed by intravital microscopy. Bone 19:S39–S57

    Article  Google Scholar 

  36. Saran U, Piperni SG, Chatterjee S (2014) Role of angiogenesis in bone repair. Arch Biochem Biophys 561:109–117

    Article  PubMed  CAS  Google Scholar 

  37. Wilson A, Shehadeh LA, Yu H, Webster KA (2010) Age-related molecular genetic changes of murine bone marrow mesenchymal stem cells. BMC Genomics 11:229

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Liu Y, Berendsen AD, Jia S, Lotinun S, Baron R, Ferrara N, Olsen BR (2012) Intracellular VEGF regulates the balance between osteoblast and adipocyte differentiation. J Clin Investig 122:3101–3113

    Article  PubMed  CAS  Google Scholar 

  39. Fukuhara S, Sako K, Noda K, Zhang J, Minami M, Mochizuki N (2010) Angiopoietin-1/Tie2 receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol 25:387–396

    PubMed  CAS  Google Scholar 

  40. Wang A, Ding X, Sheng S, Yao Z (2008) Retinoic acid inhibits osteogenic differentiation of rat bone marrow stromal cells. Biochem Biophys Res Commun 375:435–439

    Article  PubMed  CAS  Google Scholar 

  41. Warrell RJ (1993) Retinoid resistance in acute promyelocytic leukemia: new mechanisms, strategies, and implications [editorial; comment]. Blood 82:1949–1953

    PubMed  CAS  Google Scholar 

  42. Zhou DC, Kim SH, Ding W, Schultz C, Warrell RP, Gallagher RE (2002) Frequent mutations in the ligand-binding domain of PML-RARα after multiple relapses of acute promyelocytic leukemia: analysis for functional relationship to response to all-transretinoic acid and histone deacetylase inhibitors in vitro and in vivo. Blood 99:1356–1363

    Article  PubMed  CAS  Google Scholar 

  43. Chen ZX, Xue YQ, Zhang R, Tao RF, Xia XM, Li C, Wang W, Zu WY, Yao XZ, Ling BJ (1991) A clinical and experimental study on all-trans retinoic acid-treated acute promyelocytic leukemia patients. Blood 78:1413–1419

    PubMed  CAS  Google Scholar 

  44. Hatake K, Uwai M, Ohtsuki T, Tomizuka H, Izumi T, Yoshida M, Miura Y (1997) Rare but important adverse effects of all-trans retinoic acid in acute promyelocytic leukemia and their management. Int J Hematol 66:13–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (NSFC Nos. 81572122, 81772338) and the Interdisciplinary Program of Shanghai Jiao Tong University (Grant No. YG2017ZD05).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jia Xu or Yimin Chai.

Ethics declarations

Conflict of interest

Zhenjun Weng, Chunyang Wang, Cheng Zhang, Jia Xu, Yimin Chai, Yachao Jia, Pei Han, and Gen Wen declare that they have no conflict of interest.

Ethical Approval

This study was specifically approved by the Animal Experimentation Ethics Committee of the Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, and the animal experiments were therefore performed in accordance with the ethical standards laid down in the 1964 Declaration of Helsinki and its later amendments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, Z., Wang, C., Zhang, C. et al. All-Trans Retinoic Acid Promotes Osteogenic Differentiation and Bone Consolidation in a Rat Distraction Osteogenesis Model. Calcif Tissue Int 104, 320–330 (2019). https://doi.org/10.1007/s00223-018-0501-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0501-6

Keywords

Navigation