Skip to main content

Advertisement

Log in

Effect of Adding a Galacto-Oligosaccharides/Fructo-Oligosaccharides (GOS/FOS®) Mixture to a Normal and Low Calcium Diet, on Calcium Absorption and Bone Health in Ovariectomy-Induced Osteopenic Rats

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Menopause is associated with bone loss. Prebiotics increase Ca, inorganic phosphorus (Pi), and Mg absorption, improving bone health. These increases would supply an extra amount of minerals, decreasing bone resorption and possibly reversing ovariectomy-induced bone loss. The present experimental study sought to evaluate the effect of adding a prebiotic GOS/FOS® mixture to a normal or a low Ca diet on Ca, Pi, and Mg absorption, in osteopenic rats. Four groups of n = 8 rats each were OVX, and 8 rats were SHAM operated. All rats were fed a commercial diet for 45 days. They were then fed one of the following diet for 45 days: C-0.5%: SHAM fed AIN 93 M containing 0.5%Ca; O-0.5% and O-0.3%: OVX rats fed AIN 93 M, containing 0.5% or 0.3%Ca, respectively; GF-0.5% and GF-0.3%: OVX rats fed AIN 93 M, containing 0.5% or 0.3%Ca+ 2.5% GOS/FOS®, respectively. At the end of the experimental time point, Ca, P, and MgAbs% was significantly higher in GF-0.5% and GF-0.3% as compared to the remaining groups (p < 0.01). Irrespective of diet Ca content, CTX decreased whereas femur Ca and P content, tibia BV/TV and GPC.Th, lumbar spine and proximal tibia BMD, bone strength, bone stiffness, and elastic modulus increased in the GF-0.5% and GF-0.3% groups as compared to O-0.5% and O-0.3%, respectively (p < 0.05). This prebiotic mixture would be a useful tool to prevent the increase in bone loss associated with menopause and aging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

OVX:

Ovariectomized

SHAM:

Simulated operation

EGP:

Epiphyseal growth plate

Pi:

Inorganic phosphorus

CaI:

Calcium intake

NDFO:

Non-digestible fructo-oligosaccharides

GOS:

Galacto-oligosaccharides

FOS:

Long-chain fructo-oligosaccharides

AIN:

American Institute of Nutrition

NCa:

Normal Ca content diet

LCa:

Low Ca content diet

GF groups:

GOS/FOS groups

O groups:

Ovariectomized groups

BW:

Body weight

CO2 :

Oxygen dioxide

LS:

Lactobacillus

CFU:

Colony forming units

I:

Food intake

F:

Feces

Abs:

Apparent mineral absorption

Mg:

Magnesium

HCl:

Hydrochloric acid

HNO3 :

Nitric acid

CTX:

C-terminal telopeptide of collagen type I

BAP:

Bone alkaline phosphatase

tsBMC:

Total skeleton bone mineral content

tsBMD:

Total skeleton bone mineral density

DXA:

Dual energy X-ray absorptiometry

CV:

Coefficients of variation

ROI:

Region of interest

EDTA:

Ethylene-diamine-tetra-acetic acid

BV/TV:

Bone volume fraction

GPC.Th:

Total width of epiphyseal cartilage

References

  1. de Barboza GD, Guizzardi S, de Talamoni NT (2015) Molecular aspects of intestinal calcium absorption. World J Gastroenterol WJG 21(23):7142

    Article  CAS  Google Scholar 

  2. Gallagher JC, Goldgar D, Moy A (1987) Total bone calcium in normal women: effect of age and menopause status. J Bone Miner Res 2(6):491–496

    Article  CAS  PubMed  Google Scholar 

  3. Wronski TJ, Dann LM, Horner SL (1989) Time course of vertebral osteopenia in ovariectomized rats. Bone 10(4):295–301

    Article  CAS  PubMed  Google Scholar 

  4. Bryk G et al (2015) Effect of a combination GOS/FOS® prebiotic mixture and interaction with calcium intake on mineral absorption and bone parameters in growing rats. Eur J Nutr 54(6):913–923

    Article  CAS  PubMed  Google Scholar 

  5. Bryk G et al (2016) Effect of a mixture of GOS/FOS® on calcium absorption and retention during recovery from protein malnutrition: experimental model in growing rats. Eur J Nutr 55(8):2445–2458

    Article  CAS  PubMed  Google Scholar 

  6. Breuil V, Euller-Ziegler L (2004) Nutrition et vieillissement osseux: L’ostéoporose. Nutr Clin Métabol 18(4):212–218

    Article  CAS  Google Scholar 

  7. Reid IR, Bristow SM, Bolland MJ (2015) Calcium supplements: benefits and risks. J Intern Med 278(4):354–368

    Article  CAS  PubMed  Google Scholar 

  8. Kopecky SL et al (2016) Lack of evidence linking calcium with or without vitamin D supplementation to cardiovascular disease in generally healthy adults: a clinical guideline from the National Osteoporosis Foundation and the American Society for Preventive Cardiology. Ann Intern Med 165(12):867–868

    Article  PubMed  Google Scholar 

  9. Bristow SM et al (2015) Acute effects of calcium citrate with or without a meal, calcium-fortified juice and a dairy product meal on serum calcium and phosphate: a randomised cross-over trial. Br J Nutr 113(10):1585–1594

    Article  CAS  PubMed  Google Scholar 

  10. Manson JE, Bassuk SS (2014) Calcium supplements: do they help or harm? Menopause 21(1):106–108

    Article  PubMed  Google Scholar 

  11. Reid IR et al (2006) Randomized controlled trial of calcium in healthy older women. Am J Med 119(9):777–785

    Article  CAS  PubMed  Google Scholar 

  12. Coudray C et al (2003) Effects of inulin-type fructans of different chain length and type of branching on intestinal absorption and balance of calcium and magnesium in rats. Eur J Nutr 42(2):91–98

    Article  CAS  PubMed  Google Scholar 

  13. Roberfroid M et al (2010) Prebiotic effects: metabolic and health benefits. Br J Nutr 104(S2):S1–S63

    Article  CAS  PubMed  Google Scholar 

  14. Reeves PG, Nielsen FH, Fahey GC Jr (1993) AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. Oxford University Press, Oxford

    Google Scholar 

  15. Sapp RE, Davidson SD (1991) Microwave digestion of multi-component foods for sodium analysis by atomic absorption spectrometry. J Food Sci 56(5):1412–1414

    Article  CAS  Google Scholar 

  16. Farley JR et al (1994) Quantification of skeletal alkaline phosphatase in osteoporotic serum by wheat germ agglutinin precipitation, heat inactivation, and a two-site immunoradiometric assay. Clin Chem 40(9):1749–1756

    CAS  PubMed  Google Scholar 

  17. Zeni S et al (2000) Differences in bone turnover and skeletal response to thyroid hormone treatment between estrogen-depleted and repleted rats. Calcif Tissue Int 67(2):173–177

    Article  CAS  PubMed  Google Scholar 

  18. Mastaglia SR et al (2006) Vitamin D insufficiency reduces the protective effect of bisphosphonate on ovariectomy-induced bone loss in rats. Bone 39(4):837–844

    Article  CAS  PubMed  Google Scholar 

  19. Parfitt AM et al (1987) Bone histomorphometry: standardization of nomenclature, symbols, and units: report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 2(6):595–610

    Article  CAS  PubMed  Google Scholar 

  20. Bosello O, Zamboni M (2000) Visceral obesity and metabolic syndrome. Obes Rev 1(1):47–56

    Article  CAS  PubMed  Google Scholar 

  21. Macfarlane S, Macfarlane GT, Cummings JH (2006) Review article: prebiotics in the gastrointestinal tract. Aliment Pharmacol Ther 24(5):701–714

    Article  CAS  PubMed  Google Scholar 

  22. Djouzi Z, Andrieux C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78(2):313–324

    Article  CAS  PubMed  Google Scholar 

  23. Boehm G et al (2003) Prebiotic concept for infant nutrition. Acta Paediatr Oslo Nor 91(441):64–67

    CAS  Google Scholar 

  24. Scholz-Ahrens KE et al (2007) Prebiotics, probiotics, and synbiotics affect mineral absorption, bone mineral content, and bone structure. J Nutr 137(3):838S–846S

    Article  CAS  PubMed  Google Scholar 

  25. Roberfroid MB (2002) Functional foods: concepts and application to inulin and oligofructose. Br J Nutr 87(S2):S139–S143

    Article  CAS  PubMed  Google Scholar 

  26. Le Blay G et al (1999) Prolonged intake of fructo-oligosaccharides induces a short-term elevation of lactic acid-producing bacteria and a persistent increase in cecal butyrate in rats. J Nutr 129(12):2231–2235

    Article  PubMed  Google Scholar 

  27. Scholz-Ahrens KE et al (2001) Effects of prebiotics on mineral metabolism. Am J Clin Nutr 73(2):459s–464 s

    Article  CAS  PubMed  Google Scholar 

  28. Scholz-Ahrens KE, Schrezenmeir J (2007) Inulin and oligofructose and mineral metabolism: the evidence from animal trials. J Nutr 137(11):;2513S–2523S

    Article  PubMed  Google Scholar 

  29. Pansu D, Bellaton C, Bronner F (1983) Developmental changes in the mechanisms of duodenal calcium transport in the rat. Am J Physiol 244(1):G20–G26

    CAS  PubMed  Google Scholar 

  30. Weisstaub AR et al (2013) Polydextrose enhances calcium absorption and bone retention in ovariectomized rats. Int J Food Sci doi. https://doi.org/10.1155/2013/450794

    Article  Google Scholar 

  31. Taguchi A (1994) Effect of fructooligosaccharides on bone and mineral absorption in the rat model with ovariectomized osteiporosis. Sci Rep 33:37–43

    CAS  Google Scholar 

  32. Scholz-Ahrens KE, Açil Y, Schrezenmeir J (2002) Effect of oligofructose or dietary calcium on repeated calcium and phosphorus balances, bone mineralization and trabecular structure in ovariectomized rats. Br J Nutr 88(4):365–377

    Article  CAS  PubMed  Google Scholar 

  33. Zafar TA et al (2004) Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr 134(2):399–402

    Article  CAS  PubMed  Google Scholar 

  34. Mroczynska M, Libudzisz Z (2010) Beta-glucuronidase and beta-glucosidase activity of Lactobacillus and Enterococcus isolated from human feces. Pol J Microbiol 59(4):265–269

    CAS  PubMed  Google Scholar 

  35. Zhu K, Prince RL (2012) Calcium and bone. Clin Biochem 45(12):936–942

    Article  CAS  PubMed  Google Scholar 

  36. Sjögren K et al (2012) The gut microbiota regulates bone mass in mice. J Bone Miner Res 27(6):1357–1367

    Article  CAS  PubMed  Google Scholar 

  37. Raina R et al (2012) Phosphorus metabolism. J Nephrol Ther S. https://doi.org/10.4172/2161-0959.S3-008

    Article  Google Scholar 

  38. Burr DB, Robling AG, Turner CH (2002) Effects of biomechanical stress on bones in animals. Bone 30(5):781–786

    Article  PubMed  Google Scholar 

  39. Alfrey AC, Miller NL (1973) Bone magnesium pools in uremia. J Clin Invest 52(12):3019–3027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jahnen-Dechent W, Ketteler M (2012) Magnesium basics. Clin Kidney J 5(Suppl 1):i3–i14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank technicians Ricardo Orzuza and Julia Somoza for their technical assistance.

Funding

This study was supported by the University of Buenos Aires and CONICET. This study was funded by UBACyT 20020090200037 and PIP funding programs.

Author information

Authors and Affiliations

Authors

Contributions

This study is part of the thesis of MS who participated in all stages of the experiment, data entry, and analysis of results. GB performed the biochemical determinations, and MZC participated in the anthropometric and food evaluations. MER and MLPMP participated in the design of the study and in animal and diet control, and SNZ was the director of the investigation.

Corresponding author

Correspondence to Susana Noemí Zeni.

Ethics declarations

Conflict of interest

Mariana Seijo, Gabriel Bryk, Magalí Zeni Coronel, Marina Bonanno, María Esther Rio, María Luz Pita Martín de Portela and Susana Noemí Zeni have no conflict of interest to declare.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Seijo, M., Bryk, G., Zeni Coronel, M. et al. Effect of Adding a Galacto-Oligosaccharides/Fructo-Oligosaccharides (GOS/FOS®) Mixture to a Normal and Low Calcium Diet, on Calcium Absorption and Bone Health in Ovariectomy-Induced Osteopenic Rats. Calcif Tissue Int 104, 301–312 (2019). https://doi.org/10.1007/s00223-018-0490-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0490-5

Keywords

Navigation