Skip to main content
Log in

Inhibition of Osteocyte Membrane Repair Activity via Dietary Vitamin E Deprivation Impairs Osteocyte Survival

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteocytes experience plasma membrane disruptions (PMD) that initiate mechanotransduction both in vitro and in vivo in response to mechanical loading, suggesting that osteocytes use PMD to sense and adapt to mechanical stimuli. PMD repair is crucial for cell survival; antioxidants (e.g., alpha-tocopherol, also known as Vitamin E) promote repair while reactive oxygen species (ROS), which can accumulate during exercise, inhibit repair. The goal of this study was to determine whether depleting Vitamin E in the diet would impact osteocyte survival and bone adaptation with loading. Male CD-1 mice (3 weeks old) were fed either a regular diet (RD) or Vitamin E-deficient diet (VEDD) for up to 11 weeks. Mice from each dietary group either served as sedentary controls with normal cage activity, or were subjected to treadmill exercise (one bout of exercise or daily exercise for 5 weeks). VEDD-fed mice showed more PMD-affected osteocytes (+ 50%) after a single exercise bout suggesting impaired PMD repair following Vitamin E deprivation. After 5 weeks of daily exercise, VEDD mice failed to show an exercise-induced increase in osteocyte PMD formation, and showed signs of increased osteocytic oxidative stress and impaired osteocyte survival. Surprisingly, exercise-induced increases in cortical bone formation rate were only significant for VEDD-fed mice. This result may be consistent with previous studies in skeletal muscle, where myocyte PMD repair failure (e.g., with muscular dystrophy) initially triggers hypertrophy but later leads to widespread degeneration. In vitro, mechanically wounded MLO-Y4 cells displayed increased post-wounding necrosis (+ 40-fold) in the presence of H2O2, which could be prevented by Vitamin E pre-treatment. Taken together, our data support the idea that antioxidant-influenced osteocyte membrane repair is a vital aspect of bone mechanosensation in the osteocytic control of PMD-driven bone adaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Peh HY, Tan WS, Liao W, Wong WS (2016) Vitamin E therapy beyond cancer: tocopherol versus tocotrienol. Pharmacol Ther 162:152–169. https://doi.org/10.1016/j.pharmthera.2015.12.003

    Article  CAS  PubMed  Google Scholar 

  2. Satyamitra M, Ney P, Graves J 3rd, Mullaney C, Srinivasan V (2012) Mechanism of radioprotection by delta-tocotrienol: pharmacokinetics, pharmacodynamics and modulation of signalling pathways. Br J Radiol 85(1019):e1093–e1103. https://doi.org/10.1259/bjr/63355844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Labazi M, McNeil AK, Kurtz T, Lee TC, Pegg RB, Angeli JP, Conrad M, McNeil PL (2015) The antioxidant requirement for plasma membrane repair in skeletal muscle. Free Radic Biol Med 84:246–253. https://doi.org/10.1016/j.freeradbiomed.2015.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fujita K, Iwasaki M, Ochi H, Fukuda T, Ma C, Miyamoto T, Takitani K, Negishi-Koga T, Sunamura S, Kodama T, Takayanagi H, Tamai H, Kato S, Arai H, Shinomiya K, Itoh H, Okawa A, Takeda S (2012) Vitamin E decreases bone mass by stimulating osteoclast fusion. Nat Med 18(4):589–594. https://doi.org/10.1038/nm.2659

    Article  CAS  PubMed  Google Scholar 

  5. Tennant KG, Leonard SW, Wong CP, Iwaniec UT, Turner RT, Traber MG (2017) High-dietary alpha-tocopherol or mixed tocotrienols have no effect on bone mass, density, or turnover in male rats during skeletal maturation. J Med Food 20(7):700–708. https://doi.org/10.1089/jmf.2016.0147

    Article  CAS  PubMed  Google Scholar 

  6. Iwaniec UT, Turner RT, Smith BJ, Stoecker BJ, Rust A, Zhang B, Vasu VT, Gohil K, Cross CE, Traber MG (2013) Evaluation of long-term vitamin E insufficiency or excess on bone mass, density, and microarchitecture in rodents. Free Radic Biol Med 65:1209–1214. https://doi.org/10.1016/j.freeradbiomed.2013.09.004

    Article  CAS  PubMed  Google Scholar 

  7. Michaelsson K, Wolk A, Byberg L, Arnlov J, Melhus H (2014) Intake and serum concentrations of alpha-tocopherol in relation to fractures in elderly women and men: 2 cohort studies. Am J Clin Nutr 99(1):107–114. https://doi.org/10.3945/ajcn.113.064691

    Article  CAS  PubMed  Google Scholar 

  8. Stunes AK, Syversen U, Berntsen S, Paulsen G, Stea TH, Hetlelid KJ, Lohne-Seiler H, Mosti MP, Bjornsen T, Raastad T, Haugeberg G (2017) High doses of vitamin C plus E reduce strength training-induced improvements in areal bone mineral density in elderly men. Eur J Appl Physiol 117(6):1073–1084. https://doi.org/10.1007/s00421-017-3588-y

    Article  CAS  PubMed  Google Scholar 

  9. Chuin A, Labonte M, Tessier D, Khalil A, Bobeuf F, Doyon CY, Rieth N, Dionne IJ (2009) Effect of antioxidants combined to resistance training on BMD in elderly women: a pilot study. Osteoporosis Int 20(7):1253–1258. https://doi.org/10.1007/s00198-008-0798-5

    Article  CAS  Google Scholar 

  10. Yang TC, Duthie GG, Aucott LS, Macdonald HM (2016) Vitamin E homologues alpha- and gamma-tocopherol are not associated with bone turnover markers or bone mineral density in peri-menopausal and post-menopausal women. Osteoporos Int 27(7):2281–2290. https://doi.org/10.1007/s00198-015-3470-x

    Article  CAS  PubMed  Google Scholar 

  11. Ochi H, Takeda S (2015) The two sides of vitamin E supplementation. Gerontology 61(4):319–326. https://doi.org/10.1159/000366419

    Article  CAS  PubMed  Google Scholar 

  12. Ostman B, Michaelsson K, Helmersson J, Byberg L, Gedeborg R, Melhus H, Basu S (2009) Oxidative stress and bone mineral density in elderly men: antioxidant activity of alpha-tocopherol. Free Radic Biol Med 47(5):668–673. https://doi.org/10.1016/j.freeradbiomed.2009.05.031

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz-Ramos M, Vargas LA, Fortoul Van der Goes TI, Cervantes-Sandoval A, Mendoza-Nunez VM (2010) Supplementation of ascorbic acid and alpha-tocopherol is useful to preventing bone loss linked to oxidative stress in elderly. J Nutr Health Aging 14(6):467–472

    Article  CAS  PubMed  Google Scholar 

  14. Liu JF, Chang WY, Chan KH, Tsai WY, Lin CL, Hsu MC (2005) Blood lipid peroxides and muscle damage increased following intensive resistance training of female weightlifters. Ann N Y Acad Sci 1042:255–261. https://doi.org/10.1196/annals.1338.029

    Article  CAS  PubMed  Google Scholar 

  15. Gozen I, Dommersnes P (2014) Pore dynamics in lipid membranes. Eur Phys J Spec Top 223(9):1813–1829. https://doi.org/10.1140/epjst/e2014-02228-5

    Article  CAS  Google Scholar 

  16. Cooper ST, McNeil PL (2015) Membrane repair: mechanisms and pathophysiology. Physiol Rev 95(4):1205–1240. https://doi.org/10.1152/physrev.00037.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Howard AC, McNeil AK, McNeil PL (2011) Promotion of plasma membrane repair by vitamin E. Nat Commun 2:597. https://doi.org/10.1038/ncomms1594

    Article  CAS  PubMed  Google Scholar 

  18. Yu K, Sellman DP, Bahraini A, Hagan ML, Elsherbini A, Vanpelt KT, Marshall PL, Hamrick MW, McNeil A, McNeil PL, McGee-Lawrence ME (2017) Mechanical loading disrupts osteocyte plasma membranes which initiates mechanosensation events in bone. J Orthop Res. https://doi.org/10.1002/jor.23665

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hamrick MW, Skedros JG, Pennington C, McNeil PL (2006) Increased osteogenic response to exercise in metaphyseal versus diaphyseal cortical bone. J Musculoskelet Neuronal Interact 6(3):258–263

    CAS  PubMed  Google Scholar 

  20. Refaey ME, McGee-Lawrence ME, Fulzele S, Kennedy EJ, Bollag WB, Elsalanty M, Zhong Q, Ding KH, Bendzunas NG, Shi XM, Xu J, Hill WD, Johnson MH, Hunter M, Pierce JL, Yu K, Hamrick MW, Isales CM (2017) Kynurenine, a tryptophan metabolite that accumulates with age, induces bone loss. J Bone Miner Res 32(11):2182–2193. https://doi.org/10.1002/jbmr.3224

    Article  CAS  PubMed  Google Scholar 

  21. Liou GY, Storz P (2015) Detecting reactive oxygen species by immunohistochemistry. Methods Mol Biol 1292:97–104. https://doi.org/10.1007/978-1-4939-2522-3_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. McGee ME, Maki AJ, Johnson SE, Nelson OL, Robbins CT, Donahue SW (2008) Decreased bone turnover with balanced resorption and formation prevent cortical bone loss during disuse (hibernation) in grizzly bears (Ursus arctos horribilis). Bone 42(2):396–404

    Article  PubMed  Google Scholar 

  23. McGee-Lawrence ME, Wenger KH, Misra S, Davis CL, Pollock NK, Elsalanty M, Ding K, Isales CM, Hamrick MW, Wosiski-Kuhn M, Arounleut P, Mattson MP, Cutler RG, Yu JC, Stranahan AM (2017) Whole-body vibration mimics the metabolic effects of exercise in male leptin receptor-deficient mice. Endocrinology 158(5):1160–1171. https://doi.org/10.1210/en.2016-1250

    Article  PubMed  PubMed Central  Google Scholar 

  24. Feresin RG, Johnson SA, Elam ML, Kim JS, Khalil DA, Lucas EA, Smith BJ, Payton ME, Akhter MP, Arjmandi BH (2013) Effects of vitamin e on bone biomechanical and histomorphometric parameters in ovariectomized rats. J Osteoporosis 2013:825985. https://doi.org/10.1155/2013/825985

    Article  CAS  Google Scholar 

  25. Shuid AN, Mohamad S, Muhammad N, Fadzilah FM, Mokhtar SA, Mohamed N, Soelaiman IN (2011) Effects of alpha-tocopherol on the early phase of osteoporotic fracture healing. J Orthop Res 29(11):1732–1738. https://doi.org/10.1002/jor.21452

    Article  CAS  PubMed  Google Scholar 

  26. Smith BJ, Lucas EA, Turner RT, Evans GL, Lerner MR, Brackett DJ, Stoecker BJ, Arjmandi BH (2005) Vitamin E provides protection for bone in mature hindlimb unloaded male rats. Calcif Tissue Int 76(4):272–279

    Article  CAS  PubMed  Google Scholar 

  27. Jia YB, Jiang DM, Ren YZ, Liang ZH, Zhao ZQ, Wang YX (2017) Inhibitory effects of vitamin E on osteocyte apoptosis and DNA oxidative damage in bone marrow hemopoietic cells at early stage of steroid-induced femoral head necrosis. Mol Med Rep 15(4):1585–1592. https://doi.org/10.3892/mmr.2017.6160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Santos SA, Silva ET, Caris AV, Lira FS, Tufik S, Dos Santos RV (2016) Vitamin E supplementation inhibits muscle damage and inflammation after moderate exercise in hypoxia. J Hum Nutr Diet 29(4):516–522. https://doi.org/10.1111/jhn.12361

    Article  CAS  PubMed  Google Scholar 

  29. Rocha CT, Hoffman EP (2010) Limb-girdle and congenital muscular dystrophies: current diagnostics, management, and emerging technologies. Curr Neurol Neurosci Rep 10(4):267–276. https://doi.org/10.1007/s11910-010-0119-1

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tami AE, Schaffler MB, Knothe Tate ML (2003) Probing the tissue to subcellular level structure underlying bone’s molecular sieving function. Biorheology 40(6):577–590

    CAS  PubMed  Google Scholar 

  31. Davis C, Dukes A, Drewry M, Helwa I, Johnson MH, Isales CM, Hill WD, Liu Y, Shi X, Fulzele S, Hamrick MW (2017) MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng Part A 23(21–22):1231–1240. https://doi.org/10.1089/ten.TEA.2016.0525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Votyakova TV, Reynolds IJ (2004) Detection of hydrogen peroxide with Amplex Red: interference by NADH and reduced glutathione auto-oxidation. Arch Biochem Biophys 431(1):138–144. https://doi.org/10.1016/j.abb.2004.07.025

    Article  CAS  PubMed  Google Scholar 

  33. Jahn K, Stoddart MJ (2011) Viability assessment of osteocytes using histological lactate dehydrogenase activity staining on human cancellous bone sections. Methods Mol Biol 740:141–148. https://doi.org/10.1007/978-1-61779-108-6_15

    Article  CAS  PubMed  Google Scholar 

  34. Wallace JM, Rajachar RM, Allen MR, Bloomfield SA, Robey PG, Young MF, Kohn DH (2007) Exercise-induced changes in the cortical bone of growing mice are bone- and gender-specific. Bone 40(4):1120–1127

    Article  PubMed  PubMed Central  Google Scholar 

  35. Amelink GJ, van der Wal WA, Wokke JH, van Asbeck BS, Bar PR (1991) Exercise-induced muscle damage in the rat: the effect of vitamin E deficiency. Pflugers Arch 419(3–4):304–309

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Funding was received from the National Science Foundation (CMMI 1727949), the National Institute on Aging (P01 AG036675), and the Augusta University Medical Scholars Program. The authors wish to thank the Augusta University Cell Imaging Core Laboratory for assistance with imaging procedures and the Augusta University Electron Microscopy and Histology Core Laboratory for assistance with histology.

Author information

Authors and Affiliations

Authors

Contributions

All authors have read and approved the final submitted manuscript.

Corresponding author

Correspondence to Meghan E. McGee-Lawrence.

Ethics declarations

Conflict of interest

Mackenzie L. Hagan, Anoosh Bahraini, Jessica L. Pierce, Sarah M. Bass, Kanglun Yu, Ranya Elsayed, Mohammed Elsalanty, Maribeth H. Johnson, Anna McNeil, Paul L. McNeil, and Meghan E. McGee-Lawrence declare that they have no conflict of interest.

Human and Animal Rights

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not contain any studies with human participants performed by any of the authors.

Informed Consent

Informed consent was not obtained because this article does not contain any studies with human participants.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagan, M.L., Bahraini, A., Pierce, J.L. et al. Inhibition of Osteocyte Membrane Repair Activity via Dietary Vitamin E Deprivation Impairs Osteocyte Survival. Calcif Tissue Int 104, 224–234 (2019). https://doi.org/10.1007/s00223-018-0487-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0487-0

Keywords

Navigation