Skip to main content

Advertisement

Log in

Aortic Calcification is Associated with Five-Year Decline in Handgrip Strength in Older Women

Calcified Tissue International Aims and scope Submit manuscript

Abstract

The objective of the study was to determine the association between AAC and neuromuscular function over 5 years. Participants in this study were ambulant women over 70 years old residing in Perth, Western Australia who participated in the Calcium Intake Fracture Outcomes Study, a randomised controlled trial of calcium supplementation. 1046 women (mean age = 74.9 ± 2.6 years; BMI = 27.1 ± 4.4 kg/m2) were included. Lateral spine images captured during bone density testing were scored for AAC (AAC24; 0–24) at baseline. Severe AAC (AACsev) was defined using established cut points (AAC24 ≥ 6). At baseline and follow-up, isometric grip strength was assessed using a dynamometer. Mobility was assessed by the Timed-Up-and-Go (TUG) test. Using pre-defined criteria, muscle weakness was considered as grip strength < 22 kg and poor mobility defined as TUG > 10.2 s. A subset of women had appendicular lean mass (ALM) determined by dual-energy X-ray absorptiometry at baseline and follow-up (n = 261). AACsev was evident in 193 (18.5%) women. Average decline in grip strength after 5 years was greater in those with AACsev than those without (3.6 ± 3.7 vs. 2.9 ± 4.2 kg; p = 0.034). This remained significant after adjustment for age, treatment allocation, diabetes, smoking history, renal function, medical record-derived prevalent vascular disease, BMI and physical activity (β = − 0.184; 95% confidence interval: − 0.361, − 0.008; p = 0.040). AACsev was not associated with 5-year changes in TUG or ALM in univariable or multivariable analyses (all p > 0.05). In older women, severe aortic calcification was associated with greater 5-year decline in muscle strength, but not TUG or ALM. These findings support the concept that vascular disease may have an effect on the loss of muscular strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  1. Zhu K, Devine A, Lewis JR et al (2011) Timed up and go test and bone mineral density measurement for fracture prediction. Arch Intern Med 171:1655. https://doi.org/10.1001/archinternmed.2011.434

    Article  PubMed  Google Scholar 

  2. Hebert R, Brayne C, Spiegelhalter D Factors associated with functional decline and improvement in a very elderly community-dwelling population. Am J Epidemiol 150:501–510

    Article  CAS  Google Scholar 

  3. Lewis JR, Schousboe JT, Lim WH et al (2016) Abdominal aortic calcification identified on lateral spine images from bone densitometers are a marker of generalized atherosclerosis in elderly women. Arterioscler Thromb Vasc Biol 36:166–173. https://doi.org/10.1161/ATVBAHA.115.306383

    Article  CAS  PubMed  Google Scholar 

  4. Lewis JR, Schousboe JT, Lim WH et al (2018) Long-term atherosclerotic vascular disease risk and prognosis in elderly women with abdominal aortic calcification on lateral spine images captured during bone density testing: a prospective study. J Bone Miner Res. https://doi.org/10.1002/jbmr.3405

    Article  PubMed  Google Scholar 

  5. Schousboe JT, Taylor BC, Kiel DP et al (2007) Abdominal aortic calcification detected on lateral spine images from a bone densitometer predicts incident myocardial infarction or stroke in older women. J Bone Miner Res 23:409–416. https://doi.org/10.1359/jbmr.071024

    Article  Google Scholar 

  6. Jayalath RW, Mangan SH, Golledge J (2005) Aortic calcification. Eur J Vasc Endovasc Surg 30:476–488. https://doi.org/10.1016/j.ejvs.2005.04.030

    Article  CAS  PubMed  Google Scholar 

  7. Schousboe JT, Lewis JR, Kiel DP (2017) Abdominal aortic calcification on dual-energy X-ray absorptiometry: methods of assessment and clinical significance. Bone 104:91–100

    Article  Google Scholar 

  8. Tanimura A, McGregor DH, Anderson HC (1983) Matrix vesicles in atherosclerotic calcification. Proc Soc Exp Biol Med 172:173–177

    Article  CAS  Google Scholar 

  9. Szulc P, Blackwell T, Kiel DP et al (2015) Abdominal aortic calcification and risk of fracture among older women—the SOF study. Bone 81:16–23. https://doi.org/10.1016/j.bone.2015.06.019

    Article  PubMed  PubMed Central  Google Scholar 

  10. Krishna SM, Seto S-W, Jose RJ et al (2017) Wnt signaling pathway inhibitor sclerostin inhibits angiotensin II–induced aortic aneurysm and atherosclerosis highlights. Arterioscler Thromb Vasc Biol 37:553–566. https://doi.org/10.1161/ATVBAHA.116.308723

    Article  CAS  PubMed  Google Scholar 

  11. Xiang W, Liao W, Yi Z et al (2017) 25-Hydroxyvitamin D-1-α-hydroxylase in apoliporotein E knockout mice: the role of protecting vascular smooth muscle cell from calcification. Biomed Pharmacother 88:971–977. https://doi.org/10.1016/j.biopha.2017.01.093

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez AJ, Scott D, Khan B et al (2016) Low relative lean mass is associated with increased likelihood of abdominal aortic calcification in community-dwelling older Australians. Calcif Tissue Int 99:340–349

    Article  CAS  Google Scholar 

  13. Delmonico MJ, Harris TB, Visser M et al (2009) Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr 90:1579–1585. https://doi.org/10.3945/ajcn.2009.28047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Park J, Park H (2017) Muscle strength and carotid artery flow velocity is associated with increased risk of atherosclerosis in adults. Cardiol J 24:385–392. https://doi.org/10.5603/CJ.a2017.0007

    Article  PubMed  Google Scholar 

  15. Abizanda Soler P, Paterna Mellinas G, Martín Sebastiá E et al (2010) Aterosclerosis subclínica, un predictor de limitación funcional al año en ancianos con alto nivel funcional: estudio Albacete. Rev Esp Geriatr Gerontol 45:125–130. https://doi.org/10.1016/j.regg.2009.09.005

    Article  PubMed  Google Scholar 

  16. Everson-Rose SA, Mendes de Leon CF, Roetker NS et al (2018) Subclinical cardiovascular disease and changes in self-reported mobility: multi-ethnic study of atherosclerosis. J Gerontol Ser A 73:218–224. https://doi.org/10.1093/gerona/glx103

    Article  Google Scholar 

  17. Prince RL, Devine A, Dhaliwal SS et al (2006) Effects of calcium supplementation on clinical fracture and bone structure. Arch Intern Med 166:869. https://doi.org/10.1001/archinte.166.8.869

    Article  CAS  PubMed  Google Scholar 

  18. Hodge A, Patterson AJ, Brown WJ et al (2000) The anti cancer council of Victoria FFQ: relative validity of nutrient intakes compared with weighed food records in young to middle-aged women in a study of iron supplementation. Aust N Z J Public Health 24:576–583

    Article  CAS  Google Scholar 

  19. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  Google Scholar 

  20. Britt H, Scahill S, Miller G (1997) ICPC PLUS© for community health? A feasibility study. Health Inf Manag 27:171–175. https://doi.org/10.1177/183335839802700406

    Article  CAS  PubMed  Google Scholar 

  21. Duchowny KA, Peterson MD, Clarke PJ (2017) Cut points for clinical muscle weakness among older Americans. Am J Prev Med 53:63–69. https://doi.org/10.1016/j.amepre.2016.12.022

    Article  PubMed  PubMed Central  Google Scholar 

  22. Devine A, Dhaliwal SS, Dick IM et al (2004) Physical activity and calcium consumption are important determinants of lower limb bone mass in older women. J Bone Miner Res 19:1634–1639. https://doi.org/10.1359/JBMR.040804

    Article  CAS  PubMed  Google Scholar 

  23. McArdle WD, Katch FI, Katch VL (1996) Exercise physiology: energy, nutrition, and human performance. Williams & Wilkins, Philadelphia

    Google Scholar 

  24. Maunsell Z, Wright DJ, Rainbow SJ (2005) Routine isotope-dilution liquid chromatography-tandem mass spectrometry assay for simultaneous measurement of the 25-hydroxy metabolites of vitamins d2 and D3. Clin Chem 51:1683–1690. https://doi.org/10.1373/clinchem.2005.052936

    Article  CAS  PubMed  Google Scholar 

  25. Kauppila LI, Polak JF, Cupples LA et al (1997) New indices to classify location, severity and progression of calcific lesions in the abdominal aorta: a 25-year follow-up study. Atherosclerosis 132:245–250

    Article  CAS  Google Scholar 

  26. Schousboe JT, Wilson KE, Kiel DP (2006) Detection of abdominal aortic calcification with lateral spine imaging using DXA. J Clin Densitom 9:302–308

    Article  Google Scholar 

  27. Schousboe JT, Wilson KE, Hangartner TN (2007) Detection of aortic calcification during vertebral fracture assessment (VFA) compared to digital radiography. PLoS ONE 2(8):e715

    Article  Google Scholar 

  28. Golestani R, Tio RA, Zeebregts CJ et al (2010) Abdominal aortic calcification detected by dual X-ray absorptiometry: a strong predictor for cardiovascular events. Ann Med 42:539–545

    Article  Google Scholar 

  29. Radavelli-Bagatini S, Zhu K, Lewis JR et al (2013) Association of dairy intake with body composition and physical function in older community-dwelling women. J Acad Nutr Diet 113:1669–1674. https://doi.org/10.1016/j.jand.2013.05.019

    Article  PubMed  Google Scholar 

  30. Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol Ser A 69:547–558. https://doi.org/10.1093/gerona/glu010

    Article  Google Scholar 

  31. Mitchell GF (2008) Effects of central arterial aging on the structure and function of the peripheral vasculature: implications for end-organ damage. J Appl Physiol 105:1652–1660. https://doi.org/10.1152/japplphysiol.90549.2008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Efstratiadis G, Kirmizis D, Papazoglou K et al (2004) The walking man with a completely occluded aorta. Nephrol Dial Transplant 19:227–229. https://doi.org/10.1093/ndt/gfg379

    Article  PubMed  Google Scholar 

  33. Brack AS, Conboy MJ, Roy S et al (2007) Increased Wnt signaling during aging alters muscle stem cell fate and increases fibrosis. Science 317:807–810. https://doi.org/10.1126/science.1144090

    Article  CAS  PubMed  Google Scholar 

  34. Pickering M-E, Simon M, Sornay-Rendu E et al (2017) Serum sclerostin increases after acute physical activity. Calcif Tissue Int 101:170–173. https://doi.org/10.1007/s00223-017-0272-5

    Article  CAS  PubMed  Google Scholar 

  35. Han XH, Jin Y-R, Tan L et al (2014) Regulation of the follistatin gene by RSPO-LGR4 signaling via activation of the WNT/-catenin pathway in skeletal myogenesis. Mol Cell Biol 34:752–764. https://doi.org/10.1128/MCB.01285-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schaap LA, Pluijm SMF, Deeg DJH, Visser M (2006) Inflammatory markers and loss of muscle mass (Sarcopenia) and strength. Am J Med 119:526-e9. https://doi.org/10.1016/j.amjmed.2005.10.049

    Article  CAS  Google Scholar 

  37. Den Ouden MEM, Schuurmans MJ, Arts EMA et al (2013) Atherosclerosis and physical functioning in older men, a longitudinal study. J Nutr Health Aging 17:97–104. https://doi.org/10.1007/s12603-012-0424-2

    Article  Google Scholar 

  38. Hellings WE, Peeters W, Moll FL et al (2010) Composition of carotid atherosclerotic plaque is associated with cardiovascular outcome: a prognostic study. Circulation 121:1941–1950. https://doi.org/10.1161/CIRCULATIONAHA.109.887497

    Article  PubMed  Google Scholar 

  39. Suwa M, Imoto T, Kida A et al (2018) Association of body flexibility and carotid atherosclerosis in Japanese middle-aged men: a cross-sectional study. BMJ Open 8:e019370. https://doi.org/10.1136/bmjopen-2017-019370

    Article  PubMed  PubMed Central  Google Scholar 

  40. Shimizu Y, Sato S, Koyamatsu J et al (2017) Handgrip strength and subclinical carotid atherosclerosis in relation to platelet levels among hypertensive elderly Japanese. Oncotarget 8:69362–69369. https://doi.org/10.18632/oncotarget.20618

    Article  PubMed  PubMed Central  Google Scholar 

  41. Berenson GS, Srinivasan SR, Bao W et al (1998) Association between multiple cardiovascular risk factors and atherosclerosis in children and young adults. N Engl J Med 338:1650–1656. https://doi.org/10.1056/NEJM199806043382302

    Article  CAS  PubMed  Google Scholar 

  42. DiCarlo SE, Stahl LK, Bishop VS (1997) Daily exercise attenuates the sympathetic nerve response to exercise by enhancing cardiac afferents. Am J Physiol Circ Physiol 273:H1606–H1610. https://doi.org/10.1152/ajpheart.1997.273.3.H1606

    Article  CAS  Google Scholar 

  43. Green D, Cheetham C, Mavaddat L et al (2002) Effect of lower limb exercise on forearm vascular function: contribution of nitric oxide. Am J Physiol Circ Physiol 283:H899–H907. https://doi.org/10.1152/ajpheart.00049.2002

    Article  CAS  Google Scholar 

  44. Williams MC, Murchison JT, Edwards LD et al (2014) Coronary artery calcification is increased in patients with COPD and associated with increased morbidity and mortality. Thorax 69:718–723. https://doi.org/10.1136/thoraxjnl-2012-203151

    Article  PubMed  Google Scholar 

  45. Reid KF, Martin KI, Doros G et al (2015) Comparative effects of light or heavy resistance power training for improving lower extremity power and physical performance in mobility-limited older adults. J Gerontol Ser A 70:374–380. https://doi.org/10.1093/gerona/glu156

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the participants of the CAIFOS study and all study personnel involved in data collection and the operation of the study.

Author information

Authors and Affiliations

Authors

Contributions

AJR: Study concept and design, data analysis, interpretation of data and manuscript preparation. JRL: Interpretation of data and manuscript preparation. DSS: Interpretation of data and manuscript preparation. DPK: Interpretation of data and manuscript preparation. JTS: Acquisition of data, interpretation of data and manuscript preparation. PRE: Interpretation of data and manuscript preparation. RLP: Study concept and design, acquisition of data, interpretation of data and manuscript preparation.

Corresponding author

Correspondence to Alexander J. Rodríguez.

Ethics declarations

Conflict of interest

Alexander J. Rodríguez, Joshua R. Lewis, David S. Scott, Douglas P. Kiel, John T. Schousboe, Peter R. Ebeling and Richard L. Prince declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Trial registration: Australian New Zealand Clinical Trials Registry ACTRN12615000750583. The study conformed to all ethical requirements according to the Human Research Ethics Committee of the Western Australian Department of Health (DOHWA HREC), project number #2009/24. All participants gave informed consent.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 29 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A.J., Lewis, J.R., Scott, D.S. et al. Aortic Calcification is Associated with Five-Year Decline in Handgrip Strength in Older Women. Calcif Tissue Int 103, 589–598 (2018). https://doi.org/10.1007/s00223-018-0458-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0458-5

Keywords

Navigation