Skip to main content

Advertisement

Log in

Ficus deltoidea Prevented Bone Loss in Preclinical Osteoporosis/Osteoarthritis Model by Suppressing Inflammation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteoporosis (OP) and osteoarthritis (OA) are debilitating musculoskeletal diseases of the elderly. Ficus deltoidea (FD) or mistletoe fig, a medicinal plant, was pre-clinically evaluated against OP- and OA-related bone alterations, in postmenopausal OA rat model. Thirty twelfth-week-old female rats were divided into groups (n = 6). Four groups were bilateral ovariectomized (OVX) and OA-induced by intra-articular monosodium iodoacetate (MIA) injection into the right knee joints. The Sham control and OVX-OA non-treated groups were given deionized water. The three other OVX-OA groups were orally administered daily with FD extract (200, 400 mg/kg) or diclofenac (5 mg/kg) for 4 weeks. The rats’ bones and blood were evaluated for protein and mRNA expressions of osteoporosis and inflammatory indicators, and micro-CT computed tomography for bone microstructure. The non-treated OVX-OA rats developed severe OP bone loss and bone microstructural damage in the subchondral and metaphyseal regions, supported by reduced serum bone formation markers (osteocalcin, osteoprotegerin) and increased bone resorption markers (RANKL and CTX-I). The FD extract significantly (p < 0.05) mitigated these bone microstructural and biomarker changes by dose-dependently down-regulating pro-inflammatory NF-κβ, TNF-α, and IL-6 mRNA expressions. The FD extract demonstrated good anti-osteoporotic properties in this OP/OA preclinical model by stimulating bone formation and suppressing bone resorption via anti-inflammatory pathways. This is among the few reports relating the subchondral bone plate and trabecular thickening with the metaphyseal trabecular osteopenic bone loss under osteoporotic-osteoarthritis conditions, providing some insights on the debated inverse relationship between osteoporosis and osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Loeser RF, Collins JA, Diekman BO (2016) Ageing and the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:412–420

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Hendrickx G, Boudin E, Van Hul W (2015) A look behind the scenes: the risk and pathogenesis of primary osteoporosis. Nat Rev Rheumatol 11:462–474

    Article  PubMed  Google Scholar 

  3. Foss MV, Byers PD (1972) Bone density, osteoarthrosis of the hip, and fracture of the upper end of the femur. Ann Rheum Dis 31:259–264. https://doi.org/10.1136/ard.31.4.259

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Vestergaard P, Rejnmark L, Mosekilde L (2009) Osteoarthritis and risk of fractures. Calcif Tissue Int 84:249–256. https://doi.org/10.1007/s00223-009-9224-z

    Article  PubMed  CAS  Google Scholar 

  5. Chan MY, Center JR, Eisman JA, Nguyen TV (2014) Bone mineral density and association of osteoarthritis with fracture risk. Osteoarthritis Cartilage 22:1251–1258. https://doi.org/10.1016/j.joca.2014.07.004

    Article  PubMed  CAS  Google Scholar 

  6. Domingues VR, de Campos GC, Plapler PG, de Rezende MU (2015) Prevalence of osteoporosis in patients awaiting total hip arthroplasty. Acta Ortop Bras 23:34–37. https://doi.org/10.1590/1413-78522015230100981

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wright NC, Lisse JR, Walitt BT et al (2011) Arthritis increases the risk for fractures—results from the women’s health initiative. J Rheumatol 38:1680–1688. https://doi.org/10.3899/jrheum.101196

    Article  PubMed  PubMed Central  Google Scholar 

  8. Herrera VLM, Bagamasbad P, Decano JL, Ruiz-Opazo N (2011) AVR/NAVR deficiency lowers blood pressure and differentially affects urinary concentrating ability, cognition, and anxiety-like behavior in male and female mice. Physiol Genomics 43:32–42. https://doi.org/10.1152/physiolgenomics.00154.2010

    Article  PubMed  CAS  Google Scholar 

  9. Bhala N, Emberson J, Merhi A et al (2013) Vascular and upper gastrointestinal effects of non-steroidal anti-inflammatory drugs: meta-analyses of individual participant data from randomised trials. Lancet 382:769–779. https://doi.org/10.1016/S0140-6736(13)60900-9

    Article  PubMed  CAS  Google Scholar 

  10. Geusens P, Emans PJ, De Jong JJA, Van Den Bergh J (2013) NSAIDs and fracture healing. Curr Opin Rheumatol 25:524–531

    Article  PubMed  CAS  Google Scholar 

  11. Pan M-H, Lai C-S, Ho C-T (2010) Anti-inflammatory activity of natural dietary flavonoids. Food Funct 1:15. https://doi.org/10.1039/c0fo00103a

    Article  PubMed  CAS  Google Scholar 

  12. Dudarić L, Fužinac-Smojver A, Muhvić D, Giacometti J (2015) The role of polyphenols on bone metabolism in osteoporosis. Food Res Int 77:290–298. https://doi.org/10.1016/j.foodres.2015.10.017

    Article  CAS  Google Scholar 

  13. Starr F, Starr K, Loope L (2003) Mistletoe fig, Moraceae. Ficus deltoidea 2:1–5

    Google Scholar 

  14. Bunawan H, Amin NM, Bunawan SN et al (2014) Ficus deltoidea Jack: a review on its phytochemical and pharmacological importance. Evid Based Complement Altern Med 2014:902734. https://doi.org/10.1155/2014/902734

    Article  Google Scholar 

  15. Farsi E, Shafaei A, Hor S et al (2013) Genotoxicity and acute and subchronic toxicity studies of a standardized methanolic extract of Ficus deltoidea leaves. Clinics 68:865–875. https://doi.org/10.6061/clinics/2013(06)23

    Article  PubMed  PubMed Central  Google Scholar 

  16. He M, Min JW, Kong WL et al (2016) A review on the pharmacological effects of vitexin and isovitexin. Fitoterapia 115:74–85

    Article  PubMed  CAS  Google Scholar 

  17. Che Ahmad Tantowi NA, Hussin P, Lau SF, Mohamed S (2017) Mistletoe fig (Ficus deltoidea Jack) leaf extract prevented postmenopausal osteoarthritis by attenuating inflammation and cartilage degradation in rat model. Menopause 24(9):1071–1080

    Article  PubMed  Google Scholar 

  18. Mohan G, Perilli E, Kuliwaba JS et al (2011) Application of in vivo micro-computed tomography in the temporal characterisation of subchondral bone architecture in a rat model of low-dose monosodium iodoacetate-induced osteoarthritis. Arthritis Res Ther. https://doi.org/10.1186/ar3543

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bevill G, Keaveny TM (2009) Trabecular bone strength predictions using finite element analysis of micro-scale images at limited spatial resolution. Bone 44:579–584. https://doi.org/10.1016/j.bone.2008.11.020

    Article  PubMed  Google Scholar 

  20. Mccloskey EV, Odén A, Harvey NC et al (2015) A meta-analysis of trabecular bone score in fracture risk prediction and its relationship to FRAX. J Bone Miner Res 31:940–948. https://doi.org/10.1002/jbmr.2734

    Article  PubMed  Google Scholar 

  21. Høegh-Andersen P, Tankó LB, Andersen TL et al (2004) Ovariectomized rats as a model of postmenopausal osteoarthritis: validation and application. Arthritis Res Ther 6:R169–R180. https://doi.org/10.1186/ar1152

    Article  CAS  Google Scholar 

  22. Guzman RE, Evans MG, Bove S et al (2003) Mono-iodoacetate-induced histologic changes in subchondral bone and articular cartilage of rat femorotibial joints: an animal model of osteoarthritis. Toxicol Pathol 31:619–624. https://doi.org/10.1080/01926230390241800

    Article  PubMed  CAS  Google Scholar 

  23. Castañeda S, Roman-Blas JA, Largo R, Herrero-Beaumont G (2014) Osteoarthritis: a progressive disease with changing phenotypes. Rheumatology 53:1–3

    Article  PubMed  Google Scholar 

  24. Akhter MP, Lappe JM, Davies KM, Recker RR (2007) Transmenopausal changes in the trabecular bone structure. Bone 41:111–116. https://doi.org/10.1016/j.bone.2007.03.019

    Article  PubMed  CAS  Google Scholar 

  25. Bonnet N, Laroche N, Vico L et al (2009) Assessment of trabecular bone microarchitecture by two different X-ray microcomputed tomographs: a comparative study of the rat distal tibia using Skyscan and Scanco devices. Med Phys 36:1286–1297. https://doi.org/10.1118/1.3096605

    Article  PubMed  CAS  Google Scholar 

  26. Zhang R, Hu S, Li C et al (2012) Achyranthes bidentata root extract prevent OVX-induced osteoporosis in rats. J Ethnopharmacol 139:12–18. https://doi.org/10.1016/j.jep.2011.05.034

    Article  PubMed  Google Scholar 

  27. Recker RR, Ste-Marie LG, Langdahl B et al (2009) Oral ibandronate preserves trabecular microarchitecture: micro-computed tomography findings from the oral ibandronate osteoporosis vertebral fracture trial in North America and Europe Study. J Clin Densitom 12:71–76. https://doi.org/10.1016/j.jocd.2008.10.006

    Article  PubMed  Google Scholar 

  28. Pastoureau P, Leduc S, Chomel A, De Ceuninck F (2003) Quantitative assessment of articular cartilage and subchondral bone histology in the meniscectomized guinea pig model of osteoarthritis. Osteoarthritis Cartilage 11:412–423. https://doi.org/10.1016/S1063-4584(03)00050-5

    Article  PubMed  CAS  Google Scholar 

  29. Bellido M, Lugo L, Roman-Blas J et al (2010) Subchondral bone microstructural damage by increased remodelling aggravates experimental osteoarthritis preceded by osteoporosis. Arthritis Res Ther 12:R152. https://doi.org/10.1186/ar3103

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Xu XJ, Shen L, Yang YP et al (2013) Serum β-catenin levels associated with the ratio of RANKL/OPG in patients with postmenopausal osteoporosis. Int J Endocrinol. https://doi.org/10.1155/2013/534352

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tou JC (2015) Evaluating resveratrol as a therapeutic bone agent: preclinical evidence from rat models of osteoporosis. Ann N Y Acad Sci 1348:75–85. https://doi.org/10.1111/nyas.12840

    Article  PubMed  CAS  Google Scholar 

  32. Moreno-Rubio J, Herrero-Beaumont G, Tardío L et al (2010) Nonsteroidal antiinflammatory drugs and prostaglandin E2 modulate the synthesis of osteoprotegerin and RANKL in the cartilage of patients with severe knee osteoarthritis. Arthritis Rheum 62:478–488. https://doi.org/10.1002/art.27204

    Article  PubMed  CAS  Google Scholar 

  33. Rigoglou S, Papavassiliou AG (2013) The NF-kB signalling pathway in osteoarthritis. Int J Biochem Cell Biol 45:2580–2584. https://doi.org/10.1016/j.biocel.2013.08.018

    Article  PubMed  CAS  Google Scholar 

  34. Chang J, Wang Z, Tang E et al (2009) Inhibition of osteoblast functions by IKK/NF-kB in osteoporosis. Nat Med 15:682. https://doi.org/10.1038/nm.1954.Inhibition

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Robinson WH, Lepus CM, Wang Q et al (2016) Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 12:580–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Abu-Amer Y (2013) NF-κB signaling and bone resorption. Osteoporos Int 24:2377–2386. https://doi.org/10.1007/s00198-013-2313-x

    Article  PubMed  CAS  Google Scholar 

  37. Brincat SD, Borg M, Camilleri G, Calleja-Agius J (2014) The role of cytokines in postmenopausal osteoporosis. Minerva Ginecol 66:391–407

    PubMed  CAS  Google Scholar 

  38. Chang J, Wang Z, Tang E et al (2009) Inhibition of osteoblastic bone formation by nuclear factor-B. Nat Med 15:682–689. https://doi.org/10.1038/nm.1954

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Guo HY, Jiang L, Ibrahim SA et al (2009) Orally administered lactoferrin preserves bone mass and microarchitecture in ovariectomized rats. J Nutr 139:958–964. https://doi.org/10.3945/jn.108.100586.TABLE

    Article  PubMed  CAS  Google Scholar 

  40. Kou XX, Wu YW, Ding Y et al (2011) 17β-Estradiol aggravates temporomandibular joint inflammation through the NF-kB pathway in ovariectomized rats. Arthritis Rheum 63:1888–1897. https://doi.org/10.1002/art.30334

    Article  PubMed  CAS  Google Scholar 

  41. Hasham R, Choi HK, Sarmidi MR, Park CS (2013) Protective effects of a Ficus deltoidea (Mas cotek) extract against UVB-induced photoageing in skin cells. Biotechnol Bioprocess Eng 18:185–193. https://doi.org/10.1007/s12257-012-0353-2

    Article  CAS  Google Scholar 

  42. Che Ahmad Tantowi N, Mohamed S, Hussin P (2016) Effect of Ficus deltoidea, a medicinal plant, on cartilage protection in cartilage explant and postmenopausal rat models of osteoarthritis. Osteoarthritis Cartilage 24:S353–S354. https://doi.org/10.1016/j.joca.2016.01.636

    Article  Google Scholar 

  43. Borghi SM, Carvalho TT, Staurengo-Ferrari L et al (2013) Vitexin inhibits inflammatory pain in mice by targeting TRPV1, oxidative stress, and cytokines. J Nat Prod 76:1141–1146. https://doi.org/10.1021/np400222v

    Article  PubMed  CAS  Google Scholar 

  44. Zhang S, Guo C, Chen Z et al (2017) Vitexin alleviates ox-LDL-mediated endothelial injury by inducing autophagy via AMPK signaling activation. Mol Immunol 85:214–221. https://doi.org/10.1016/j.molimm.2017.02.020

    Article  PubMed  CAS  Google Scholar 

  45. Lin C-MM, Huang S-TT, Liang Y-CC et al (2005) Isovitexin suppresses lipopolysaccharide-mediated inducible nitric oxide synthase through inhibition of NF-kappa B in mouse macrophages. Planta Med 71:748–753. https://doi.org/10.1055/s-2005-871287

    Article  PubMed  CAS  Google Scholar 

  46. Park JA, Ha SK, Kang TH et al (2008) Protective effect of apigenin on ovariectomy-induced bone loss in rats. Life Sci 82:1217–1223. https://doi.org/10.1016/j.lfs.2008.03.021

    Article  PubMed  CAS  Google Scholar 

  47. Goto T, Hagiwara K, Shirai N et al (2015) Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology 67:357–365. https://doi.org/10.1007/s10616-014-9694-3

    Article  PubMed  CAS  Google Scholar 

  48. Pacifici R (2008) Estrogen deficiency, T cells and bone loss. Cell Immunol 252:68–80

    Article  PubMed  CAS  Google Scholar 

  49. Lizcano F, Guzmán G (2014) Estrogen deficiency and the origin of obesity during menopause. Biomed Res Int 2014:757461. https://doi.org/10.1155/2014/757461

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Wegorzewska IN, Walters K, Weiser MJ et al (2008) Postovariectomy weight gain in female rats is reversed by estrogen receptor a agonist, propylpyrazoletriol. Am J Obstet Gynecol. https://doi.org/10.1016/j.ajog.2007.11.054

    Article  PubMed  Google Scholar 

  51. Metcalfe AJ, Andersson MLE, Goodfellow R, Thorstensson CA (2012) Is knee osteoarthritis a symmetrical disease? Analysis of a 12 year prospective cohort study. BMC Musculoskelet Disord 13:153. https://doi.org/10.1186/1471-2474-13-153

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge the Ministry of Agriculture, Herbal development Division for the research grant; Universiti Putra Malaysia for the facilities; and Comparative Medicine and Technology (CoMeT) Unit and Institute of Bioscience, Universiti Putra Malaysia for the assistance in performing all-animal-related procedures.

Funding

This work was supported by the Herbal Development Division, Ministry of Agriculture, Malaysia (Grant No. NH1014D052).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhaila Mohamed.

Ethics declarations

Conflict of interest

Nur Adeelah Che Ahmad Tantowi, Seng Fong Lau, and Suhaila Mohamed declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted [Institutional Animal Care and Use Committee (IACUC), Universiti Putra Malaysia (UPM/IACUC/AUPR083/2014)].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Che Ahmad Tantowi, N.A., Lau, S.F. & Mohamed, S. Ficus deltoidea Prevented Bone Loss in Preclinical Osteoporosis/Osteoarthritis Model by Suppressing Inflammation. Calcif Tissue Int 103, 388–399 (2018). https://doi.org/10.1007/s00223-018-0433-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0433-1

Keywords

Navigation