Skip to main content

Advertisement

Log in

The Effect of β-Aminopropionitrile on Skeletal Micromorphology and Osteogenesis

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Collagen cross-linking, as a form of collagen post-translational modification, plays a crucial role in maintaining bone mechanical properties as well as in regulating cell biological functions. Shifts in cross-links profile are found apparently correlated to kinds of skeletal pathology and diseases, whereas little is known about the relationship between collagen cross-links and osteogenesis. Here, we hypothesized that the inhibition of collagen cross-links could impair skeletal microstructure and inhibit osteogenesis. A mouse model of collagen cross-linking defects has been established using subcutaneous injection of 350 mg/kg β-aminopropionitrile (BAPN) daily for 4 weeks, and same dose of phosphate buffered saline (PBS) served as control group. The analysis of bone microstructural parameters revealed a significant decrease of bone volume fraction (BV/TV) and trabecular thickness (Tb.Th), and increase of bone surface ratio (BS/BV), structure model index (SMI) as well as trabecular separation (Tb.Sp) in the experimental group (p < 0.05), whereas there was no difference observed in bone mineral density (BMD). Histological staining displayed that the BAPN treatment caused thinner trabeculae and decrease of collagen content in proximal tibiae. The analysis of osteogenesis PCR (Polymerase Chain Reaction) array reflected that BAPN remarkably influenced the expression of Alpl, Bglap, Bgn, Bmp5, Col10a1, Col1a1, Col1a2, Col5a1, Itga2b, and Serpinh1. The results of immunohistochemistry displayed a significant reduction in the mean optical densities of OCN and COL1 at the presence of BAPN. The overall results of this study suggested that BAPN alters bone microstructure and hinders the expression of osteogenic genes without affecting mineralization processes, indicating the influences of collagen cross-links on osteogenesis may be a potential pathological mechanism in skeletal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saito M, Marumo K (2015) Effects of collagen crosslinking on bone material properties in health and disease. Calcif Tissue Int 97:242–261. https://doi.org/10.1007/s00223-015-9985-5

    Article  PubMed  CAS  Google Scholar 

  2. Yamauchi M, Sricholpech M (2012) Lysine post-translational modifications of collagen. Essays Biochem 52:113–133. https://doi.org/10.1042/bse0520113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Smith-Mungo LI, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16:387–398

    Article  PubMed  CAS  Google Scholar 

  4. Kagan HM, Trackman PC (1991) Properties and function of lysyl oxidase. Am J Respir Cell Mol Biol 5:206–210. https://doi.org/10.1165/ajrcmb/5.3.206

    Article  PubMed  CAS  Google Scholar 

  5. McNerny EMB, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:455–464. https://doi.org/10.1002/jbmr.2356

    Article  PubMed  CAS  Google Scholar 

  6. Oxlund H, Barckman M, Ørtoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:365S–371S

    PubMed  CAS  Google Scholar 

  7. Rouby El DH, Bashir MH, Korany NS (2008) Ultrastructural and histomorphometric alterations of rat jaw bones after experimental induction of lathyrism. Arch Oral Biol 53:916–923. https://doi.org/10.1016/j.archoralbio.2008.04.008

    Article  CAS  Google Scholar 

  8. Banse X, Sims TJ, Bailey AJ (2002) Mechanical properties of adult vertebral cancellous bone: correlation with collagen intermolecular cross-links. J Bone Miner Res 17:1621–1628. https://doi.org/10.1359/jbmr.2002.17.9.1621

    Article  PubMed  CAS  Google Scholar 

  9. Viguet-Carrin S, Garnero P, Delmas PD (2005) The role of collagen in bone strength. Osteoporos Int 17:319–336. https://doi.org/10.1007/s00198-005-2035-9

    Article  PubMed  CAS  Google Scholar 

  10. Reichenberger E, Olsen BR (1996) Collagens as organizers of extracellular matrix during morphogenesis. Semin Cell Dev Biol 7:631–638. https://doi.org/10.1006/scdb.1996.0077

    Article  CAS  Google Scholar 

  11. Paschalis EP, Tatakis DN, Robins S et al (2011) Lathyrism-induced alterations in collagen cross-links influence the mechanical properties of bone material without affecting the mineral. Bone 49:1232–1241. https://doi.org/10.1016/j.bone.2011.08.027

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Garnero P, Borel O, Gineyts E et al (2006) Extracellular post-translational modifications of collagen are major determinants of biomechanical properties of fetal bovine cortical bone. Bone 38:300–309. https://doi.org/10.1016/j.bone.2005.09.014

    Article  PubMed  CAS  Google Scholar 

  13. Trappmann B (2012) Extracellular-matrix tethering regulates stem-cell fate. Nat Mater 11:642–649. https://doi.org/10.1038/nmat3339

    Article  PubMed  CAS  Google Scholar 

  14. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. https://doi.org/10.1016/j.cell.2006.06.044

    Article  PubMed  CAS  Google Scholar 

  15. Shih Y-RV, Tseng K-F, Lai H-Y et al (2011) Matrix stiffness regulation of integrin-mediated mechanotransduction during osteogenic differentiation of human mesenchymal stem cells. J Bone Miner Res 26:730–738. https://doi.org/10.1002/jbmr.278

    Article  PubMed  CAS  Google Scholar 

  16. Bank RA, Robins SP, Wijmenga C et al (1999) Defective collagen crosslinking in bone, but not in ligament or cartilage, in Bruck syndrome: indications for a bone-specific telopeptide lysyl hydroxylase on chromosome 17. Proc Natl Acad Sci USA 96:1054–1058

    Article  PubMed  CAS  Google Scholar 

  17. Bank RA, Tekoppele JM, Janus GJ et al (2000) Pyridinium cross-links in bone of patients with osteogenesis imperfecta: evidence of a normal intrafibrillar collagen packing. J Bone Miner Res 15:1330–1336. https://doi.org/10.1359/jbmr.2000.15.7.1330

    Article  PubMed  CAS  Google Scholar 

  18. Forlino A, Cabral WA, Barnes AM, Marini JC (2011) New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 7:540–557. https://doi.org/10.1038/nrendo.2011.81

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Paschalis EP, Gamsjaeger S, Fratzl-Zelman N et al (2016) Evidence for a role for nanoporosity and pyridinoline content in human mild osteogenesis imperfecta. J Bone Miner Res 31:1050–1059. https://doi.org/10.1002/jbmr.2780

    Article  PubMed  CAS  Google Scholar 

  20. Saito M, Marumo K (2009) Collagen cross-links as a determinant of bone quality: a possible explanation for bone fragility in aging, osteoporosis, and diabetes mellitus. Osteoporos Int 21:195–214. https://doi.org/10.1007/s00198-009-1066-z

    Article  CAS  Google Scholar 

  21. Oxlund H, Mosekilde L, Ørtoft G (1996) Reduced concentration of collagen reducible cross links in human trabecular bone with respect to age and osteoporosis. Bone 19:479–484

    Article  PubMed  CAS  Google Scholar 

  22. Canelón SP, Wallace JM (2016) β-aminopropionitrile-induced reduction in enzymatic crosslinking causes in vitro changes in collagen morphology and molecular composition. PLoS ONE 11:e0166392–e0166313. https://doi.org/10.1371/journal.pone.0166392

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Bouxsein ML, Boyd SK, Christiansen BA et al (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25:1468–1486. https://doi.org/10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  24. Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317–324. https://doi.org/10.1002/ar.1092240220

    Article  PubMed  CAS  Google Scholar 

  25. Morinobu M, Nakamoto T, Hino K et al (2005) The nucleocytoplasmic shuttling protein CIZ reduces adult bone mass by inhibiting bone morphogenetic protein-induced bone formation. J Exp Med 201:961–970. https://doi.org/10.1084/jem.20041097

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Oxlund H, Barckman M, Ørtoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:S365–S371. https://doi.org/10.1016/8756-3282(95)00328-B

    Article  Google Scholar 

  27. Mizoguchi F, Izu Y, Hayata T et al (2010) Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 109:866–875. https://doi.org/10.1002/jcb.22228

    Article  PubMed  CAS  Google Scholar 

  28. Matsuzawa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem 19:801–808. https://doi.org/10.1177/19.12.801

    Article  PubMed  CAS  Google Scholar 

  29. Eliades A, Papadantonakis N, Bhupatiraju A et al (2011) Control of megakaryocyte expansion and bone marrow fibrosis by lysyl oxidase. J Biol Chem 286:27630–27638. https://doi.org/10.1074/jbc.M111.243113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Fernandes H, Dechering K, Van Someren E et al (2009) The role of collagen crosslinking in differentiation of human mesenchymal stem cells and MC3T3-E1 cells. Tissue Eng A 15:3857–3867. https://doi.org/10.1089/ten.tea.2009.0011

    Article  CAS  Google Scholar 

  31. Morgan SL, Prater GL (2017) Quality in dual-energy X-ray absorptiometry scans. Bone. https://doi.org/10.1016/j.bone.2017.01.033

    Article  PubMed Central  PubMed  Google Scholar 

  32. Shi J, Lee S, Uyeda M et al (2016) Guidelines for dual energy X-ray absorptiometry analysis of trabecular bone-rich regions in mice: improved precision, accuracy, and sensitivity for assessing longitudinal bone changes. Tissue Eng C 22:451–463. https://doi.org/10.1089/ten.tec.2015.0383

    Article  Google Scholar 

  33. Kahai S, Vary CPH, Gao Y, Seth A (2004) Collagen, type V, alpha1 (COL5A1) is regulated by TGF-beta in osteoblasts. Matrix Biol 23:445–455. https://doi.org/10.1016/j.matbio.2004.09.004

    Article  PubMed  CAS  Google Scholar 

  34. Kingsley DM, Bland AE, Grubber JM et al (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71:399–410

    Article  PubMed  CAS  Google Scholar 

  35. Xu T, Bianco P, Fisher LW et al (1998) Targeted disruption of the biglycan gene leads to an osteoporosis-like phenotype in mice. Nat Genet 20:78–82. https://doi.org/10.1038/1746

    Article  PubMed  CAS  Google Scholar 

  36. Coleman R, Brown J, Terpos E et al (2008) Bone markers and their prognostic value in metastatic bone disease: clinical evidence and future directions. Cancer Treat Rev 34:629–639. https://doi.org/10.1016/j.ctrv.2008.05.001

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Anderson HC, Sipe JB, Hessle L et al (2004) Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Am J Pathol 164:841–847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Seibel MJ (2005) Biochemical markers of bone turnover: part I: biochemistry and variability. Clin Biochem Rev 26:97–122

    PubMed  PubMed Central  Google Scholar 

  39. Neve A, Corrado A, Cantatore FP (2013) Osteocalcin: skeletal and extra-skeletal effects. J Cell Physiol 228:1149–1153. https://doi.org/10.1002/jcp.24278

    Article  PubMed  CAS  Google Scholar 

  40. Turecek C, Fratzl-Zelman N, Rumpler M et al (2008) Collagen cross-linking influences osteoblastic differentiation. Calcif Tissue Int 82:392–400. https://doi.org/10.1007/s00223-008-9136-3

    Article  PubMed  CAS  Google Scholar 

  41. Parisuthiman D, Mochida Y, Duarte WR, Yamauchi M (2005) Biglycan modulates osteoblast differentiation and matrix mineralization. J Bone Miner Res 20:1878–1886. https://doi.org/10.1359/JBMR.050612

    Article  PubMed  CAS  Google Scholar 

  42. Vijayan V, Gupta S, Gupta S (2017) Bone morphogenetic protein-5, a key molecule that mediates differentiation in MC3T3E1 osteoblast cell line. Biofactors 20:343. https://doi.org/10.1002/biof.1360

    Article  CAS  Google Scholar 

  43. Ho AM, Marker PC, Peng H et al (2008) Dominant negative Bmp5 mutation reveals key role of BMPs in skeletal response to mechanical stimulation. BMC Dev Biol 8:35. https://doi.org/10.1186/1471-213X-8-35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Mitjavila-Garcia MT, Cailleret M, Godin I et al (2002) Expression of CD41 on hematopoietic progenitors derived from embryonic hematopoietic cells. Development 129:2003–2013

    PubMed  CAS  Google Scholar 

  45. Farjanel J, Sève S, Borel A et al (2005) Inhibition of lysyl oxidase activity can delay phenotypic modulation of chondrocytes in two-dimensional culture. Osteoarthr Cartil 13:120–128. https://doi.org/10.1016/j.joca.2004.06.015

    Article  PubMed  CAS  Google Scholar 

  46. Warman ML, Abbott M, Apte SS et al (1993) A type X collagen mutation causes Schmid metaphyseal chondrodysplasia. Nat Genet 5:79–82. https://doi.org/10.1038/ng0993-79

    Article  PubMed  CAS  Google Scholar 

  47. Jacenko O, LuValle PA, Olsen BR (1993) Spondylometaphyseal dysplasia in mice carrying a dominant negative mutation in a matrix protein specific for cartilage-to-bone transition. Nature 365:56–61. https://doi.org/10.1038/365056a0

    Article  PubMed  CAS  Google Scholar 

  48. Nagai N, Hosokawa M, Itohara S et al (2000) Embryonic lethality of molecular chaperone Hsp47 knockout mice is associated with defects in collagen biosynthesis. J Cell Biol 150:1499–1506. https://doi.org/10.1083/jcb.150.6.1499

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Masago Y, Hosoya A, Kawasaki K et al (2012) The molecular chaperone Hsp47 is essential for cartilage and endochondral bone formation. J Cell Sci 125:1118–1128. https://doi.org/10.1242/jcs.089748

    Article  PubMed  CAS  Google Scholar 

  50. Väänänen K, Morris DC, Munoz PA, Parvinen EK (1987) Immunohistochemical study of alkaline phosphatase in growth plate cartilage, bone, and fetal calf isolated chondrocytes using monoclonal antibodies. Acta Histochem 82:211–217. https://doi.org/10.1016/S0065-1281(87)80032-6

    Article  PubMed  Google Scholar 

  51. Augello A, De Bari C (2010) The regulation of differentiation in mesenchymal stem cells. Hum Gene Ther 21:1226–1238. https://doi.org/10.1089/hum.2010.173

    Article  PubMed  CAS  Google Scholar 

  52. Discher DE, Mooney DJ, Zandstra PW (2009) Growth factors, matrices, and forces combine and control stem cells. Science 324:1673–1677. https://doi.org/10.1126/science.1171643

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Harris GM, Piroli ME, Jabbarzadeh E (2013) Deconstructing the effects of matrix elasticity and geometry in mesenchymal stem cell lineage commitment. Adv Funct Mater 24:2396–2403. https://doi.org/10.1002/adfm.201303400

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (Grant No. 31470904).

Author information

Authors and Affiliations

Authors

Contributions

Study design: Yu Shen, Pu Yang, and Jin Hao. Study conduct: Yu Shen, Dian Jing, and Ge Tang. Data collection: Yu Shen and Dian Jing. Data analysis: Yu Shen, Pu Yang, and Dian Jing. Data interpretation: Yu Shen, Pu Yang, and Dian Jing. Drafting manuscript: Yu Shen. Revising manuscript content: Yu Shen, Pu Yang, and Zhihe Zhao. Approving final version of manuscript: Yu Shen, Pu Yang, Dian Jing, Jin Hao, Ge Tang, and Zhihe Zhao. Yu Shen and Zhihe Zhao take responsibility for the integrity of the data analysis.

Corresponding authors

Correspondence to Pu Yang or Zhihe Zhao.

Ethics declarations

Conflict of interest

Yu Shen, Dian Jing, Jin Hao, Ge Tang, Pu Yang, and Zhihe Zhao declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All the treatments described in this research were reviewed and approved by the Ethics Committee of State Key Laboratory of Oral Diseases at the Sichuan University.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Jing, D., Hao, J. et al. The Effect of β-Aminopropionitrile on Skeletal Micromorphology and Osteogenesis. Calcif Tissue Int 103, 411–421 (2018). https://doi.org/10.1007/s00223-018-0430-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0430-4

Keywords

Navigation