Skip to main content

Advertisement

Log in

Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Dickkopf-1 (DKK1) and sclerostin are antagonists of the Wnt/β-catenin pathway and decreased expression of either results in increased bone formation and mass. As both affect the same signaling pathway, we aimed to elucidate the redundancy and/or compensation of sclerostin and DKK1. Weekly sclerostin antibody (Scl-Ab) was used to treat 9-week-old female Dkk1 KO (Dkk1−/−:Wnt3+/−) mice and compared to Scl-Ab-treated wild-type mice as well as vehicle-treated Dkk1 KO and wild-type animals. While Wnt3 heterozygote (Wnt3+/−) mice show no bone phenotype, Scl-Ab and vehicle-treated control groups of this genotype were included. Specimens were harvested after 3 weeks for microCT, bone histomorphometry, anti-sclerostin immunohistochemistry, and biomechanical testing. Scl-Ab enhanced bone anabolism in all treatment groups, but with synergistic enhancement seen in the cancellous compartment of Dkk1 KO mice (bone volume + 55% Dkk1 KO p < 0.01; + 22% wild type p < 0.05). Scl-Ab treatment produced less marked increases in cortical bone of the tibiae, with anabolic effects similar across genotypes. Mechanical testing confirmed that Scl-Ab improved strength across all genotypes; however, no enhancement was seen within Dkk1 KO mice. Dynamic bone labeling showed that Scl-Ab treatment was associated with increased bone formation, regardless of genotype. Immunohistochemical staining for sclerostin protein indicated no differences in the Dkk1 KO mice, indicating that the increased Wnt signaling associated with DKK1 deficiency was not compensated by upregulation of sclerostin protein. These data suggest complex interactions between Wnt signaling factors in bone, but critically illustrate synergy between DKK1 deficiency and Scl-Ab treatment. These data support the application of dual-targeted therapeutics in the modulation of bone anabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Krishnan V, Bryant HU, Macdougald OA (2006) Regulation of bone mass by Wnt signaling. J Clin Invest 116(5):1202–1209

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR, Alam I et al (2008) Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J Biol Chem 283(9):5866–5875

    Article  PubMed  CAS  Google Scholar 

  3. Li J, Sarosi I, Cattley RC, Pretorius J, Asuncion F, Grisanti M et al (2006) Dkk1-mediated inhibition of Wnt signaling in bone results in osteopenia. Bone 39(4):754–766

    Article  PubMed  CAS  Google Scholar 

  4. Guo J, Liu M, Yang D, Bouxsein ML, Saito H, Galvin RJ et al (2010) Suppression of Wnt signaling by Dkk1 attenuates PTH-mediated stromal cell response and new bone formation. Cell Metab 11(2):161–171

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Yao GQ, Wu JJ, Troiano N, Insogna K (2011) Targeted overexpression of Dkk1 in osteoblasts reduces bone mass but does not impair the anabolic response to intermittent PTH treatment in mice. J Bone Miner Metab 29(2):141–148

    Article  PubMed  CAS  Google Scholar 

  6. Loots GG, Kneissel M, Keller H, Baptist M, Chang J, Collette NM et al (2005) Genomic deletion of a long-range bone enhancer misregulates sclerostin in Van Buchem disease. Genome Res 15(7):928–935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Rhee Y, Allen MR, Condon K, Lezcano V, Ronda AC, Galli C et al (2011) PTH receptor signaling in osteocytes governs periosteal bone formation and intracortical remodeling. J Bone Miner Res 26(5):1035–1046

    Article  PubMed  CAS  Google Scholar 

  8. Winkler DG, Sutherland MK, Geoghegan JC, Yu C, Hayes T, Skonier JE et al (2003) Osteocyte control of bone formation via sclerostin, a novel BMP antagonist. EMBO J 22(23):6267–6276

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. MacDonald BT, Joiner DM, Oyserman SM, Sharma P, Goldstein SA, He X et al (2007) Bone mass is inversely proportional to Dkk1 levels in mice. Bone 41(3):331–339

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kramer I, Kneissel M (2008) The high bone mass phenotype of Sost deficient mice is characterized by progressive increase in bone thickness, mineralization and predicted cortical bone strength in a gene dosage unrelated manner. Bone 42(Supplement 1):S57

    Article  Google Scholar 

  11. Li X, Ominsky MS, Niu QT, Sun N, Daugherty B, D’Agostin D et al (2008) Targeted deletion of the sclerostin gene in mice results in increased bone formation and bone strength. J Bone Miner Res 23(6):860–869

    Article  PubMed  Google Scholar 

  12. McDonald MM, Morse A, Schindeler A, Mikulec K, Peacock L, Cheng T et al (2017) Homozygous Dkk1 knockout mice exhibit high bone mass phenotype due to increased bone formation. Calcif Tissue Int 102:105–116

    Article  PubMed  CAS  Google Scholar 

  13. Staehling-Hampton K, Proll S, Paeper BW, Zhao L, Charmley P, Brown A et al (2002) A 52-kb deletion in the SOST-MEOX1 intergenic region on 17q12-q21 is associated with van Buchem disease in the Dutch population. Am J Med Genet 110(2):144–152

    Article  PubMed  Google Scholar 

  14. Balemans W, Ebeling M, Patel N, Van Hul E, Olson P, Dioszegi M et al (2001) Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet 10(5):537–543

    Article  PubMed  CAS  Google Scholar 

  15. Gardner JC, van Bezooijen RL, Mervis B, Hamdy NA, Lowik CW, Hamersma H et al (2005) Bone mineral density in sclerosteosis; affected individuals and gene carriers. J Clin Endocrinol Metab 90(12):6392–6395

    Article  PubMed  CAS  Google Scholar 

  16. Chang MK, Kramer I, Keller H, Gooi JH, Collett C, Jenkins D et al (2013) Reversing LRP5-dependent osteoporosis and SOST-deficiency induced sclerosing bone disorders by altering WNT signaling activity. J Bone Miner Res 29:29–42

    Article  CAS  Google Scholar 

  17. van Lierop A, Moester M, Hamdy N, Papapoulos S (2013) Serum dickkopf 1 levels in sclerostin deficiency. J Clin Endocrinol Metab 99:E252–E256

    Article  PubMed  CAS  Google Scholar 

  18. Florio M, Gunasekaran K, Stolina M, Li X, Liu L, Tipton B et al (2016) A bispecific antibody targeting sclerostin and DKK-1 promotes bone mass accrual and fracture repair. Nat Commun 7:11505

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Ominsky MSR, Jolette J et al (2012) Long-term sclerostin antibody treatment in cynomolgus monkeys: sustained improvements in vertebral microarchitecture and bone strength following a temporal increase in cancellous bone formation. J Bone Miner Res 27(S1):S124

    Google Scholar 

  20. van Lierop AH, Hamdy NA, Hamersma H, van Bezooijen RL, Power J, Loveridge N et al (2011) Patients with sclerosteosis and disease carriers: human models of the effect of sclerostin on bone turnover. J Bone Miner Res 26(12):2804–2811

    Article  PubMed  CAS  Google Scholar 

  21. Lewis SL, Khoo PL, De Young RA, Steiner K, Wilcock C, Mukhopadhyay M et al (2008) Dkk1 and Wnt3 interact to control head morphogenesis in the mouse. Development 135(10):1791–1801

    Article  PubMed  CAS  Google Scholar 

  22. Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C, Chen L, Tsukui T, Gomer L et al (2001) Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 1(3):423–434

    Article  PubMed  CAS  Google Scholar 

  23. Liu P, Wakamiya M, Shea MJ, Albrecht U, Behringer RR, Bradley A (1999) Requirement for Wnt3 in vertebrate axis formation. Nat Genet 22(4):361–365

    Article  PubMed  CAS  Google Scholar 

  24. Chandra A, Lin T, Young T, Tong W, Ma X, Tseng WJ et al (2017) Suppression of sclerostin alleviates radiation-induced bone loss by protecting bone-forming cells and their progenitors through distinct mechanisms. J Bone Miner Res 32(2):360–372

    Article  PubMed  CAS  Google Scholar 

  25. Morse A, Schindeler A, McDonald MM, Kneissel M, Kramer I, Little DG (2017) Sclerostin antibody augments the anabolic bone formation response in a mouse model of mechanical tibial loading. J Bone Miner Res 33:486–498

    Article  PubMed  CAS  Google Scholar 

  26. Morse A, McDonald MM, Kelly NH, Melville KM, Schindeler A, Kramer I et al (2014) Mechanical load increases in bone formation via a sclerostin-independent pathway. J Bone Miner Res 29(11):2456–2467

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Moustafa A, Sugiyama T, Prasad J, Zaman G, Gross T, Lanyon L et al (2011) Mechanical loading-related changes in osteocyte sclerostin expression in mice are more closely associated with the subsequent osteogenic response than the peak strains engendered. Osteoporos Int 23:1–10

    Google Scholar 

  28. Lynch ME, Main RP, Xu Q, Walsh DJ, Schaffler MB, Wright TM et al (2010) Cancellous bone adaptation to tibial compression is not sex dependent in growing mice. J Appl Physiol 109(3):685–691

    Article  PubMed  PubMed Central  Google Scholar 

  29. Fritton JC, Myers ER, Wright TM, van der Meulen MC (2005) Loading induces site-specific increases in mineral content assessed by microcomputed tomography of the mouse tibia. Bone 36(6):1030–1038

    Article  PubMed  CAS  Google Scholar 

  30. Li X, Grisanti M, Fan W, Asuncion FJ, Tan HL, Dwyer D et al (2011) Dickkopf-1 regulates bone formation in young growing rodents and upon traumatic injury. J Bone Miner Res 26(11):2610–2621

    Article  PubMed  CAS  Google Scholar 

  31. McClung MR, Grauer A, Boonen S, Bolognese MA, Brown JP, Diez-Perez A et al (2014) Romosozumab in postmenopausal women with low bone mineral density. N Engl J Med 370:412–420

    Article  PubMed  CAS  Google Scholar 

  32. Recker RR, Benson CT, Matsumoto T, Bolognese MA, Robins DA, Alam J et al (2015) A randomized, double-blind phase 2 clinical trial of blosozumab, a sclerostin antibody, in postmenopausal women with low bone mineral density. J Bone Miner Res 30(2):216–224

    Article  PubMed  CAS  Google Scholar 

  33. Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S et al (2016) Romosozumab treatment in postmenopausal women with osteoporosis. N Engl J Med 375(16):1532–1543

    Article  PubMed  CAS  Google Scholar 

  34. Holdsworth G, Greenslade K, Jose J, Stencel Z, Kirby H, Moore A et al (2017) Dampening of the bone formation response following repeat dosing with sclerostin antibody in mice is associated with up-regulation of Wnt antagonists. Bone 107:93–103

    Article  PubMed  CAS  Google Scholar 

  35. McClung MRCA., Brown JP, Diez-Perez A, Resch H, Caminis J, Bolognese MA, Goemaere S, Bone HG, Zanchetta JR, Maddox J, Rosen O, Bray S, Grauer A (2015) OP0251 effects of 2 years of treatment with romosozumab followed by 1 year of denosumab or placebo in postmenopausal women with low bone mineral density. Ann Rheum Dis 74(Suppl 2):166–167

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Study design: AM, DGL, MMM, MK, IK. Study conduct: AM, TLC, SM. Data collection: AM, TLC. Data interpretation: AM, TLC, DGL. Drafting manuscript: AM. Revising manuscript content and approving final version of manuscript: all authors. AM takes responsibility for the integrity of the data analysis. We thank Lauren Peacock and Kathy Mikulec for their assistance in animal dosing. We thank Dr. Ciara Murphy for her assistance in developing methods for confocal imaging.

Corresponding author

Correspondence to David G. Little.

Ethics declarations

Conflict of interest

The authors received materials support (Scl-Ab) for this study from Novartis Pharma AG (Basel, Switzerland) and Mereo BioPharma (London, UK). Prof Little has received additional funding and materials support from Novartis Pharma AG and Mereo BioPharma for pre-clinical research separate to this submission and is a consultant for Orthopediatrics. Prof Little and A/Prof Schindeler have received funding support from Amgen Inc., UCB Pharma, N8 Medical, and Celgene for pre-clinical research separate to this submission. Dr McDonald received salary support from the IBMS Greg Mundy Fellowship and receives a Practitioner Fellowship (National Health & Medical Research Council). Authors Dr Kneissel and Dr Kramer are employees of Novartis Pharma AG.

Human and Animal Rights and Informed Consent

Animal experiments were approved and performed under the Western Sydney LHD Animal Ethics Committee protocol 4174 and CMRI/CHW animal ethics protocol K338.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morse, A., Cheng, T.L., Schindeler, A. et al. Dkk1 KO Mice Treated with Sclerostin Antibody Have Additional Increases in Bone Volume. Calcif Tissue Int 103, 298–310 (2018). https://doi.org/10.1007/s00223-018-0420-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0420-6

Keywords

Navigation