Skip to main content
Log in

Irradiation-Induced Compositional Effects on Human Bone After Extracorporeal Therapy for Bone Sarcoma

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The present study investigates Raman scattering of human bone irradiated with 50 Gy single dose during therapeutic treatment of Ewing and Osteosarcoma. Bone quality was evaluated via mineral-to-matrix ratio, degree of crystallinity, change in amount of calcium, and carbonate substitution. Alteration in collagen and its cross-links was quantified through second-derivative deconvolution of Amide I peak. A dose of 50 Gy radiation leads to almost 50% loss of mineral content, while maintaining mineral crystallinity, and small changes in carbonate substitution. Deconvolution of Amide I suggested modifications in collagen structure via increase in amount of enzymatic trivalent cross-linking (p < 0.05). Overall irradiation led to detrimental effect on bone quality via changes in its composition, consequently reducing its elastic modulus with increased plasticity. The study thus quantifies effect of single-dose 50 Gy radiation on human bone, which in turn is necessary for designing improved radiation dosage during ECRT and for better understanding post-operative care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Priestman TJ, Bullimore JA, Godden TP, Deutsch GP (1989) The Royal College of Radiologists’ Fractionation Survey. Clin Oncol 1:39–46

    Article  CAS  Google Scholar 

  2. Puri A, Gulia A, Jambhekar N, Laskar S (2012) The outcome of the treatment of diaphyseal primary bone sarcoma by resection, irradiation and re-implantation of the host bone: extracorporeal irradiation as an option for reconstruction in diaphyseal bone sarcomas. Bone Joint J 94(7):982–988. https://doi.org/10.1302/0301-620X.94B7.28916

    Article  CAS  Google Scholar 

  3. Uyttendaele D, De Schryver A, Claessens H et al (1988) Limb conservation in primary bone tumours by resection, extracorporeal irradiation and re-implantation. J Bone Joint Surg Br 70:348–353

    Article  PubMed  CAS  Google Scholar 

  4. Poffyn B, Sys G, Mulliez A et al (2011) Extracorporeally irradiated autografts for the treatment of bone tumours: tips and tricks. Int Orthop 35:889–895. https://doi.org/10.1007/s00264-010-1098-1

    Article  PubMed  Google Scholar 

  5. Hong A, Stevens G, Stalley P et al (2001) Extracorporeal irradiation for malignant bone tumors. Int J Radiat Oncol 50:441–447. https://doi.org/10.1016/S0360-3016(01)01460-2

    Article  CAS  Google Scholar 

  6. Böhm P, Springfeld R, Springer H (1998) Re-implantation of autoclaved bone segments in musculoskeletal tumor surgery. Clinical experience in 9 patients followed for 1.1–8.4 years and review of the literature. Arch Orthop Trauma Surg 118:57–65. https://doi.org/10.1007/s004020050312

    Article  PubMed  Google Scholar 

  7. Maeda M, Bryant MH, Yamagata M et al (1988) Effects of irradiation on cortical bone and their time-related changes. A biomechanical and histomorphological study. J Bone Joint Surg Am 70:392–399

    Article  PubMed  CAS  Google Scholar 

  8. Sugimoto M (1991) Changes in bone after high-dose irradiation. J Bone Jt Surg 73–B:492–497

    Article  Google Scholar 

  9. Chauhan S, Manoj K, Rastogi S et al (2017) Biomechanical investigation of the effect of extracorporeal irradiation on resected human bone. J Mech Behav Biomed Mater 65:791–800. https://doi.org/10.1016/j.jmbbm.2016.09.032

    Article  PubMed  CAS  Google Scholar 

  10. Mandair GS, Morris MD (2015) Contributions of Raman spectroscopy to the understanding of bone strength. Bonekey Rep 4:620. https://doi.org/10.1038/bonekey.2014.115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Krafft C, Codrich D, Pelizzo G, Sergo V (2008) Raman and FTIR microscopic imaging of colon tissue: a comparative study. J Biophotonics 1:154–169. https://doi.org/10.1002/jbio.200710005

    Article  PubMed  CAS  Google Scholar 

  12. Morris MD, Mandair GS (2011) Raman Assessment of Bone Quality. Clin Orthop Relat Res 469:2160–2169. https://doi.org/10.1007/s11999-010-1692-y

    Article  PubMed  Google Scholar 

  13. Morris MD, Finney WF (2004) Recent developments in Raman and infrared spectroscopy and imaging of bone tissue. Spectroscopy 18:155–159. https://doi.org/10.1155/2004/765753

    Article  CAS  Google Scholar 

  14. Penel G, Delfosse C, Descamps M, Leroy G (2005) Composition of bone and apatitic biomaterials as revealed by intravital Raman microspectroscopy. Bone 36:893–901. https://doi.org/10.1016/j.bone.2005.02.012

    Article  PubMed  CAS  Google Scholar 

  15. Kazanci M, Wagner HD, Manjubala NI, Gupta HS, Paschalis E, Roschger P, Fratzl P (2007) Raman imaging of two orthogonal planes within cortical bone. Bone 41(3):456–461. https://doi.org/10.1016/j.bone.2007.04.200

    Article  PubMed  CAS  Google Scholar 

  16. Chadefaux C, Le Hô A-S, Bellot-Gurlet L, Reiche I (2009) Curve-fitting micro-Atr-FTIR studies of the Amide I and II bands of type I collagen in archaeological bone materials. E-Preserv Sci 6:129–137

    CAS  Google Scholar 

  17. Kozielski M, Buchwald T, Szybowicz M et al (2011) Determination of composition and structure of spongy bone tissue in human head of femur by Raman spectral mapping. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-011-4353-0

    Article  PubMed  PubMed Central  Google Scholar 

  18. Akkus O, Adar F, Schaffler MB (2004) Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone 34:443–453. https://doi.org/10.1016/j.bone.2003.11.003

    Article  PubMed  CAS  Google Scholar 

  19. Roschger A, Gamsjaeger S, Hofstetter B et al (2014) Relationship between the v2PO4/Amide III ratio assessed by Raman spectroscopy and the calcium content measured by quantitative backscattered electron microscopy in healthy human osteonal bone. J Biomed Opt 19:65002. https://doi.org/10.1117/1.JBO.19.6.065002

    Article  CAS  Google Scholar 

  20. Donnelly E (2011) Methods for assessing bone quality: a review. Clin Orthop Relat Res 469:2128–2138. https://doi.org/10.1007/s11999-010-1702-0

    Article  PubMed  Google Scholar 

  21. Yamamoto T, Uchida K, Naruse K et al (2012) Quality assessment for processed and sterilized bone using Raman spectroscopy. Cell Tissue Bank 13:409–414. https://doi.org/10.1007/s10561-011-9277-x

    Article  PubMed  Google Scholar 

  22. Cox MM, Nelson DL (2008) Lehninger principles of biochemistry. WH Freeman, New York

    Google Scholar 

  23. Bandekar J, Samuel K (1985) Vibrational analysis of peptides, polypeptides, and proteins. Int J Pept Protein Res 26:407–415

    Article  PubMed  CAS  Google Scholar 

  24. Oliveira AL, Sun L, Kim HJ et al (2012) Aligned silk-based 3-D architectures for contact guidance in tissue engineering. Acta Biomater 8:1530–1542. https://doi.org/10.1016/j.actbio.2011.12.015

    Article  PubMed  CAS  Google Scholar 

  25. McNerny EM, Gong B, Morris MD, Kohn DH (2015) Bone fracture toughness and strength correlate with collagen cross-link maturity in a dose-controlled lathyrism mouse model. J Bone Miner Res 30:455–464. https://doi.org/10.1002/jbmr.2356

    Article  PubMed  CAS  Google Scholar 

  26. Gamsjaeger S, Robins SP, Tatakis DN, Klaushofer K, Paschalis EP (2017) Identification of pyridinoline trivalent collagen cross-links by Raman microspectroscopy. Calcif Tissue Int 100(6):565–574

    Article  PubMed  CAS  Google Scholar 

  27. Paschalis EP, Recker R, DiCarlo E et al (2003) Distribution of collagen cross-links in normal human trabecular bone. J Bone Miner Res 18:1942–1946. https://doi.org/10.1359/jbmr.2003.18.11.1942

    Article  PubMed  CAS  Google Scholar 

  28. Paschalis EP, Verdelis K, Doty SB, Boskey AL, Mendelsohn R, Yamauchi M (2001) Spectroscopic characterization of collagen cross-links in bone. J Bone Miner Res 16(10):1821–1828. https://doi.org/10.1359/jbmr.2001.16.10.1821

    Article  PubMed  CAS  Google Scholar 

  29. Fratzl P, Gupta HS, Paschalis EP, Roschger P (2004) Structure and mechanical quality of the collagen–mineral nano-composite in bone. J Mater Chem 14:2115–2123. https://doi.org/10.1039/B402005G

    Article  CAS  Google Scholar 

  30. Nair AK, Gautieri A, Chang S-W, Buehler MJ (2013) Molecular mechanics of mineralized collagen fibrils in bone. Nat Commun 4:1724. https://doi.org/10.1038/ncomms2720

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Depalle B, Qin Z, Shefelbine SJ, Buehler MJ (2015) Influence of cross-link structure, density and mechanical properties in the mesoscale deformation mechanisms of collagen fibrils. J Mech Behav Biomed Mater 52:1–13. https://doi.org/10.1016/j.jmbbm.2014.07.008

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gustafson MB, Martin RB, Gibson V et al (1996) Calcium buffering is required to maintain bone stiffness in saline solution. J Biomech 29:1191–1194. https://doi.org/10.1016/0021-9290(96)00020-6

    Article  PubMed  CAS  Google Scholar 

  33. Janardhan SY, Lind C, Akkus O (2006) The compositional and physicochemical homogeneity of male femoral cortex increases after the sixth decade. Bone 39:236–1243

    Google Scholar 

  34. Barroso RC, Lima JC, Pinto NGV et al (2006) Dose effects of cancellous bone irradiation on elemental composition: a SR-TXRF study. Activity Report. Laboratório Nacional de Luz Síncrotron, pp 1–2

  35. Oest ME, Gong B, Esmonde-White K et al (2016) Parathyroid hormone attenuates radiation-induced increases in collagen crosslink ratio at periosteal surfaces of mouse tibia. Bone 86:91–97. https://doi.org/10.1016/j.bone.2016.03.003

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Burton B, Gaspar A, Josey D et al (2014) Bone embrittlement and collagen modifications due to high-dose gamma-irradiation sterilization. Bone 61:71–81. https://doi.org/10.1016/j.bone.2014.01.006

    Article  PubMed  CAS  Google Scholar 

  37. Knott L, Bailey AJ (1998) Collagen cross-links in mineralizing tissues: a review of their chemistry, function, and clinical relevance. Bone 22:181–187

    Article  PubMed  CAS  Google Scholar 

  38. Oxlund H, Barckman M, Ørtoft G, Andreassen TT (1995) Reduced concentrations of collagen cross-links are associated with reduced strength of bone. Bone 17:S365–S371. https://doi.org/10.1016/8756-3282(95)00328-B

    Article  Google Scholar 

  39. Wang X, Li X, Shen X, Agrawal CM (2002) Age-related changes in the collagen network and toughness of bone. Bone 31:1–7

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported through graduate student grant of Indian Institute of Technology Delhi and All India Institutes of Medical Sciences New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chauhan.

Ethics declarations

Conflict of interest

S. Chauhan, S. A. Khan, A. Prasad declares that they have no conflict of interest.

Research Involving Human Participants and Informed Consent

All procedures performed in studies involving human participants were in accordance with the ethical standards of the AIIMS review committee dated June 2014. Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Khan, S.A. & Prasad, A. Irradiation-Induced Compositional Effects on Human Bone After Extracorporeal Therapy for Bone Sarcoma. Calcif Tissue Int 103, 175–188 (2018). https://doi.org/10.1007/s00223-018-0408-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0408-2

Keywords

Navigation