Mazzaferro S, Tartaglione L, Rotondi S, Bover J, Goldsmith D, Pasquali M (2014) News on biomarkers in CKD-MBD. Semin Nephrol 34(6):598–611
PubMed
Article
CAS
Google Scholar
Lomashvili K, Garg P, Narisawa S, Millan JL, O’neill WC (2008) Upregulation of alkaline phosphatase and pyrophosphate hydrolysis: potential mechanism for uremic vascular calcification. Kidney Int 73(9):1024–1030
PubMed
PubMed Central
Article
CAS
Google Scholar
Schoppet M, Shanahan CM (2008) Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney Int 73(9):989–991
PubMed
Article
CAS
Google Scholar
Schibler D, Russell RGG, Fleisch H (1968) Inhibition by pyrophosphate and poly-phosphate of aortic calcification induced by vitamin D3 in rats. Clin Sci 35:363–372
PubMed
CAS
Google Scholar
London GM (2012) Bone-vascular cross-talk. J Nephrol 25(5):619–625
PubMed
Article
Google Scholar
Bover J, Ureña-Torres P, Lloret MJ, Ruiz-García C, DaSilva I, Diaz-Encarnacion M, Mercado C, Mateu S, Fernandez E, Ballarin J (2016) Integral pharmacological management of bone mineral disorders in chronic kidney disease (part I): from treatment of phosphate imbalance to control of PTH and prevention of progression of cardiovascular calcification. Expert Opin Pharmacother 17(9):1247–1258
PubMed
Article
CAS
Google Scholar
Bover J, Ureña-Torres P, Lloret MJ, Ruiz C, DaSilva I, Diaz-Encarnacion MM, Mercado C, Mateu S, Fernández E, Ballarin J (2016) Integral pharmacological management of bone mineral disorders in chronic kidney disease (part II): from treatment of phosphate imbalance to control of PTH and prevention of progression of cardiovascular calcification. Expert Opin Pharmacother 17(10):1363–1373
PubMed
Article
CAS
Google Scholar
Shantouf R, Kovesdy CP, Kim Y, Ahmadi N, Luna A, Luna C, Rambod M, Nissenson AR, Budoff MJ, Kalantar-Zadeh K (2009) Association of serum alkaline phosphatase with coronary artery calcification in maintenance hemodialysis patients. Clin J Am Soc Nephrol 4(6):1106–1114
PubMed
PubMed Central
Article
CAS
Google Scholar
Lau W, Kalantar-Zadeh K (2014) Towards the revival of alkaline phosphatase for the management of bone disease, mortality and hip fractures. Nephrol Dial Transplant 29:1450–1452
PubMed
PubMed Central
Article
Google Scholar
Harris H (1990) The human alkaline phosphatases: what we know and what we don’t know. Clin Chim Acta 186(2):133–150
PubMed
Article
CAS
Google Scholar
Linder C, Narisawa S, Millán L, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45(5):987–993
PubMed Central
Article
CAS
Google Scholar
Bervoets R, Spasovski B, Behets J, Dams G, Polenakovic H, Zafirovska K, D’Haese, C (2003) Useful biochemical markers for diagnosing renal osteodystrophy in predialysis end-stage renal failure patients. Am J Kidney Dis 41(5):997–1007
PubMed
Article
CAS
Google Scholar
Coen G, Ballanti P, Bonucci E, Calabria S, Centorrino M, Fassino V, Sardella D (1998) Bone markers in the diagnosis of low turnover osteodystrophy in haemodialysis patients. Nephrol Dial Transplant 13(9):2294–2302
PubMed
Article
CAS
Google Scholar
Ortega O, Rodriguez I, Hinostroza J, Laso N, Callejas R, Gallar P, Vigil A (2011) Serum alkaline phosphatase levels and left ventricular diastolic dysfunction in patients with advanced chronic kidney disease. Nephron Extra 1(1):283–291
PubMed
Article
Google Scholar
Walker AW (1974) Increased intestinal alkaline phosphatase in serum of patients on maintenance haemodialysis. Lancet 303(7862):866–867
Article
Google Scholar
De Broe E, Van Hoof O (1991) Multiple forms of alkaline phosphatase in plasma of hemodialysis patients. Clin Chem 37(6):783–784
PubMed
Google Scholar
Tibi L, Chabra C, Sweeting M, Winney J, Smith F (1991) Multiple forms of alkaline phosphatase in plasma of hemodialysis patients. Clin Chem 37(6):815–820
PubMed
CAS
Google Scholar
Zetterberg H (2005) Increased serum concentrations of intestinal alkaline phosphatase in peritoneal dialysis. Clin Chem 51(3):675–676
PubMed
Article
CAS
Google Scholar
Haarhaus M, Brandenburg V, Kalantar-Zadeh K, Stenvinkel P, Magnusson P (2017) Alkaline phosphatase: a novel treatment target for cardiovascular disease in CKD. Nature Rev Nephrol 13(7):429–442
Article
CAS
Google Scholar
Ureña Torres P, de Vernejoul C (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55(6):2141–2156
Article
Google Scholar
Ureña Torres P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC (1996) Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol 7(3):506–512
Google Scholar
Couttenye M, D’Haese C, Van Hoof O, Lemoniatou E, Goodman W, Verpooten A, De Broe E (1996) Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant 11(6):1065–1072
PubMed
Article
CAS
Google Scholar
Behets J, Spasovski G, Sterling R, Goodman G, Spiegel M, De Broe E, D’haese PC (2015) Bone histomorphometry before and after long-term treatment with cinacalcet in dialysis patients with secondary hyperparathyroidism. Kidney Int 87(4):846–856
PubMed
Article
CAS
Google Scholar
Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, Rojas E (2016) Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis 67(4):559–566
PubMed
Article
Google Scholar
Ueda M, Inaba M, Okuno S, Maeno Y, Ishimura E, Yamakawa T, Nishizawa Y (2005) Serum BAP as the clinically useful marker for predicting BMD reduction in diabetic hemodialysis patients with low PTH. Life Sci 77(10):1130–1139
PubMed
Article
CAS
Google Scholar
Bover J, Jara A, Trinidad P, Rodriguez M, Martin-Malo A, Felsenfeld AJ (1994) The calcemic response to PTH in the rat: effect of elevated PTH levels and uremia. Kidney Int 46(2):310–317
PubMed
Article
CAS
Google Scholar
Bover J, Jara A, Trinidad P, Rodriguez M, Felsenfeld A (1999) Dynamics of skeletal resistance to parathyroid hormone in the rat: effect of renal failure and dietary phosphorus. Bone 25(3):279 – 85
PubMed
Article
CAS
Google Scholar
Delanaye P, Dubois E, Jouret F, Krzesinski M, Moranne O, Cavalier E (2013) Parathormone and bone-specific alkaline phosphatase for the follow-up of bone turnover in hemodialysis patients: is it so simple? Clin Chim Acta 417:35–38
PubMed
Article
CAS
Google Scholar
Llach F, Bover J (2000). Renal Osteodystrophies. Brenner BM, editor. Brenner and Rector´s “The Kidney”. 6th edn. Filadelfia. W.B. Saunders Company. pp 2103–2186
Google Scholar
Evenepoel P, Bover J, Ureña Torres P (2016) Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 90(6):1184–1190
PubMed
Article
CAS
Google Scholar
Evanson JM (1966) The response to the infusion of parathyroid extract in hypocalcaemic states. Clin Sci 31(1):63–75
PubMed
CAS
Google Scholar
Massry S, Stein R, Garty J, Arieff A, Coburn J, Norman A, Friedler R (1976) Skeletal resistance to the calcemic action of parathyroid hormone in uremia: role of 1,25 (OH)2 D3. Kidney Int 9(6):467–474
PubMed
Article
CAS
Google Scholar
Llach F, Massry S, Singer F, Kurokawa K, Kaye J, Coburn J (1975, August) Skeletal resistance to endogenous parathyroid hormone in patients with early renal failure. A possible cause for secondary hyperparathyroidism. J Clin Endocrinol Metab 41(2):339–345
PubMed
Article
CAS
Google Scholar
Wilson L, Felsenfeld A, Drezner MK, Llach F (1985). Altered divalent ion metabolism in early renal failure: role of 1,25(OH)2D. Kidney Int 27(3):565–573
PubMed
Article
CAS
Google Scholar
Bover J, Rodriguez M, Trinidad P, Jara A, Martinez ME, Machado L, Llach F, Felsenfeld AJ (1994) Factors in the development of secondary hyperparathyroidism during graded renal failure in the rat. Kidney Int 1994;45(4):953 – 61
PubMed
Article
CAS
Google Scholar
Andress L, Howard A, Birnbaum S (1991) Identification of a low molecular weight inhibitor of osteoblast mitogenesis in uremic plasma. Kidney Int 39(5):942–945
PubMed
Article
CAS
Google Scholar
Mathew S, Davies M, Lund R, Saab G, Hruska A (2006) Function and effect of bone morphogenetic protein-7 in kidney bone and the bone-vascular links in chronic kidney disease. Eur J Clin Invest 36(s2):43–50
PubMed
Article
CAS
Google Scholar
Portale A, Lonergan E, Tanney D, Halloran B (1997) Aging alters calcium regulation of serum concentration of parathyroid hormone in healthy men. Am J Physiol 272(1 Pt 1):E139-146
Google Scholar
Ureña P, Kubrusly M, Mannstadt M, Hruby M, Trinh MM, Silve C, Lacour B, Abou-Samra AB, Segre GV, Drüeke T (1994) The renal PTH/PTHrP receptor is down-regulated in rats with chronic renal failure. Kidney Int 45(2):605 – 11
PubMed
Article
Google Scholar
Galitzer H, Ben-Dov Z, Silver J, Naveh-Many T (2010) Parathyroid cell resistance to fibroblast growth factor 23 in secondary hyperparathyroidism of chronic kidney disease. Kidney Int 77(3):211–218
PubMed
Article
CAS
Google Scholar
Komaba H, Goto S, Fujii H, Hamada Y, Kobayashi A, Shibuya K, Tominaga Y, Otsuki N, Nibu K, Nakagawa K, Tsugawa N, Okano T, Kitazawa R, Fukagawa M, Kita T (2010) Depressed expression of Klotho and FGF receptor 1 in hyperplastic parathyroid glands from uremic patients. Kidney Int 77(3):232–238
PubMed
Article
CAS
Google Scholar
Brown A, Ritter C, Finch J, Slatopolsky E (1999) Decreased calcium-sensing receptor expression in hyperplastic parathyroid glands of uremic rats: role of dietary phosphate. Kidney Int 55(4):1284–1292
PubMed
Article
CAS
Google Scholar
Brown A, Dusso A, Lopez-Hilker S, Lewis-Finch J, Grooms P, Slatopolsky E (1989) 1,25-(OH)2D receptors are decreased in parathyroid glands from chronically uremic dogs. Kidney Int 35(1):19–23
PubMed
Article
CAS
Google Scholar
Mithal A, Kifor O, Kifor I, Vassilev P, Butters R, Krapcho K, Simin R, Fuller F, Hebert S, Brown E (1995) The reduced responsiveness of cultured bovine parathyroid cells to extracellular Ca2 + is associated with marked reduction in the expression of extracellular Ca(2+)-sensing receptor messenger ribonucleic acid and protein. Endocrinology 136(7):3087–3092
PubMed
Article
CAS
Google Scholar
Ritter C, Finch J, Slatopolsky E, Brown A (2001, November) Parathyroid hyperplasia in uremic rats precedes down-regulation of the calcium receptor. Kidney Int 60(5):1737–1744
PubMed
Article
CAS
Google Scholar
Fukuda N, Tanaka H, Tominaga Y, Fukagawa M, Kurokawa K, Seino Y (1993) Decreased 1,25-dihydroxyvitamin D3 receptor density is associated with a more severe form of parathyroid hyperplasia in chronic uremic patients. J Clin Invest 92(3):1436–1443
PubMed
PubMed Central
Article
CAS
Google Scholar
Silver J, Kilav R, Naveh-Many T (2002) Mechanisms of secondary hyperparathyroidism. Am J Physiol Renal Physiol 283(3):367–376
Article
Google Scholar
Román-García P, Carrillo-López N, Naves-Díaz M, Rodríguez I, Ortiz A, Cannata-Andía B (2012) Dual-specificity phosphatases are implicated in severe hyperplasia and lack of response to FGF23 of uremic parathyroid glands from rats. Endocrinology 153(4):1627–1637
PubMed
Article
CAS
Google Scholar
DeFronzo RA, Alvestrand A, Smith D, Hendler R (1981) Insulin resistance in uremia. J Clin Invest 67:563—568
PubMed Central
Article
Google Scholar
Blum WF, Ranke MB, Kietzmann K, Tonshoff B, Mehls (1991) Growth hormone resistance and inhibition of somatomedin activity by excess of insulin-like growth factor binding protein in uraemia. Pediatr Nephrol 5 0:539—544
Google Scholar
Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, Moe SM, Shroff R, Tonelli MA, Toussaint ND, Vervloet MG, Leonard MB (2017) Executive summary of the 2017 KDIGO chronic kidney disease-mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int 92(1):26–36
PubMed
Article
Google Scholar
Ketteler M, Elder G, Evenepoel P, Ix J, Jamal S, Lafage-Proust M, Shroff R, Thadhani R, Tonelli M, Kasiske B, Wheeler D, Leonard M (2015) Revisiting KDIGO clinical practice guideline on chronic kidney disease-mineral and bone disorder: a commentary from a kidney disease: improving global outcomes controversies conference. Kidney Int 87(3):502–528
PubMed
Article
Google Scholar
Bover J, Ureña Torres P, Brandenburg V, Goldsmith D, Ruiz C, DaSilva I, Bosch RJ (2014) Adynamic bone disease: from bone to vessels in chronic kidney disease. Semin Nephrol 34(6):626–640
PubMed
Article
Google Scholar
Haarhaus M, Monier-Faugere M, Magnusson P, Malluche H (2015) Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am J Kidney Dis 66(1):99–105
PubMed
PubMed Central
Article
CAS
Google Scholar
Magnusson P, Farley R (2002) Differences in sialic acid residues among bone alkaline phosphatase isoforms: a physical, biochemical, and immunological characterization. Calcif Tissue Int 71(6):508–518
PubMed
Article
CAS
Google Scholar
Halling Linder C, Narisawa S, Millán J, Magnusson P (2009) Glycosylation differences contribute to distinct catalytic properties among bone alkaline phosphatase isoforms. Bone 45(5):987–993
PubMed
Article
CAS
Google Scholar
Magnusson P, Sharp A, Magnusson M, Risteli J, Davie W, Larsson L (2001) Effect of chronic renal failure on bone turnover and bone alkaline phosphatase isoforms. Kidney Int 60(1):257–265
PubMed
Article
CAS
Google Scholar
Swolin-Eide D, Hansson S, Larsson L, Magnusson P (2006) The novel bone alkaline phosphatase B1x isoform in children with kidney disease. Pediatr Nephrol 21(11):1723–1729
PubMed
Article
Google Scholar
Haarhaus M, Fernström A, Magnusson M, Magnusson P (2009) Clinical significance of bone alkaline phosphatase isoforms, including the novel B1x isoform, in mild to moderate chronic kidney disease. Nephrol Dial Transplant 24(11):3382–3389
PubMed
Article
CAS
Google Scholar
Haarhaus M, Arnqvist H, Magnusson P (2013) Calcifying human aortic smooth muscle cells express different bone alkaline phosphatase isoforms, including the novel B1x isoform. J Vasc Res 50(2):167–174
PubMed
Article
CAS
Google Scholar
Jean G, Souberbielle J, Zaoui E, Lorriaux C, Mayor B, Hurot J, Deleaval P, Chazot C (2012) Total and bone-specific alkaline phosphatases in haemodialysis patients with chronic liver disease. Clin Biochem 45(6):436–439
PubMed
Article
CAS
Google Scholar
Ureña-Torres P, De Vernejoul M (1999) Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int 55(6):2141–2156
Article
Google Scholar
Damera S, Raphael L, Baird C, Cheung K, Greene T, Beddhu S (2011) Serum alkaline phosphatase levels associate with elevated serum C-reactive protein in chronic kidney disease. Kidney Int 79(2):228–233
PubMed
Article
CAS
Google Scholar
Kunutsor K, Bakker J, Kootstra-Ros E, Gansevoort T, Gregson J, Dullaart P (2015) Serum alkaline phosphatase and risk of incident cardiovascular disease: interrelationship with high sensitivity C-reactive protein. PLoS ONE 10(7):1–16
Article
CAS
Google Scholar
Filipowicz R, Greene T, Wei G, Cheung A, Raphael K, Baird B, Beddhu S (2013) Associations of Serum Skeletal Alkaline Phosphatase with Elevated C-Reactive Protein and Mortality. Clin J Am Soc Nephrol 8:26–32
PubMed
Article
CAS
Google Scholar
Kalantar-Zadeh K, Kuwae N, Regidor D, Kovesdy C, Kilpatrick R, Shinaberger C, McAllister C, Budoff M, Salusky I, Kopple J (2006) Survival predictability of time-varying indicators of bone disease in maintenance hemodialysis patients. Kidney Int 70:771–780
PubMed
Article
CAS
Google Scholar
Blayney M, Pisoni P, Bragg-Gresham J, Bommer J, Piera L, Saito A, Akiba T, Keen M, Young E, Port F (2008) High alkaline phosphatase levels in hemodialysis patients are associated with higher risk of hospitalization and death. Kidney Int 74:655–663
PubMed
Article
CAS
Google Scholar
Kovesdy C, Ureche V, Lu J, Kalantar-Zadeh K (2010) Outcome predictability of serum alkaline phosphatase in men with pre-dialysis CKD. Nephrol Dial Transplant 25:3003–3011
PubMed
PubMed Central
Article
CAS
Google Scholar
Taliercio J, Schold J, Simon J, Arrigain S, Tang A, Saab S, Nally J, Navaneethan S (2013) Prognostic importance of serum alkaline phosphatase in CKD stages 3–4 in a clinical population. Am J Kidney Dis 62(4):703–710
PubMed
PubMed Central
Article
CAS
Google Scholar
Molnar M, Kovesdy C, Mucsi I, Salusky I, Kalantar-Zadeh K (2012) Association of pre–kidney transplant markers of mineral and bone disorder with post-transplant outcomes. Clin J Am Soc Nephrol 7:1859–1871
PubMed
PubMed Central
Article
CAS
Google Scholar
Beddhu S, Ma X, Baird B, Cheung A, Greene T (2009) Serum alkaline phosphatase and mortality in African Americans with chronic kidney disease. Clin J Am Soc Nephrol 4:1805–1810
PubMed
PubMed Central
Article
CAS
Google Scholar
Rhee C, Molnar M, Lau W, Ravel V, Kovesdy C, Mehrotra R, Kalantar–Zadeh K (2014) Comparative mortality-predictability using alkaline phosphatase and parathyroid hormone in patients on peritoneal dialysis and hemodialysis. Perit Dial Int 34:732–748
PubMed
PubMed Central
Article
CAS
Google Scholar
Lertdumrongluk P, Lau W, Park J, Rhee C, Kovesdy C, Kalantar-Zadeh K (2013) Impact of age on survival predictability of bone turnover markers in hemodialysis patients. Nephrol Dial Transplant 28:2535–2545
PubMed
PubMed Central
Article
CAS
Google Scholar
Kobayashi I, Shidara K, Okuno S, Yamada S, Imanishi Y, Mori K, Ishimura E, Shoji S, Yamakawa T, Inaba M (2012) Higher serum bone alkaline phosphatase as a predictor of mortality in male hemodialysis patients. Life Sci 90(5–6):212–218
PubMed
Article
CAS
Google Scholar
Chang J, Feng Y, Peng Y, Hsu S, Pai M, Chen H, Wu H, Yang J (2014) Combined alkaline phosphatase and phosphorus levels as a predictor of mortality in maintenance hemodialysis patients. Medicine (Baltimore) 93(18):1–8
Article
CAS
Google Scholar
Sumida K, Molnar M, Potukuchi P, Thomas F, Lu J, Obi Y, Rhee C, Streja E, Yamagata K, Kalantar-Zadeh K, Kovesdy C (2017) Prognostic significance of pre-end-stage renal disease serum alkaline phosphatase for post-end-stage renal disease mortality in late-stage chronic kidney disease patients transitioning to dialysis. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfw412 [E-pub ahead of print]
Article
PubMed
PubMed Central
Google Scholar
Tonelli M, Curhan G, Pfeffer M, Sacks F, Thadhani R, Melamed M, Wiebe N, Muntner P (2009) Relation between alkaline phosphatase, serum phosphate, and all-cause or cardiovascular mortality. Circulation 120(18):1784–1792
PubMed
Article
CAS
Google Scholar
Drechsler C, Verduijn M, Pilz S, Krediet R, Dekker F, Wanner C, Ketteler M, Boeschoten E, Brandenburg V, NECOSAD Study Group (2011). Bone alkaline phosphatase and mortality in dialysis patients. Clin J Am Sc Nephrol 6 (7): 1752–1759
Article
CAS
Google Scholar
Maruyama Y, Taniguchi M, Kazama J, Yokoyama K, Hosoya T, Yokoo T, Shigematsu T, Iseki K, Tsubakihara Y (2014) A higher serum alkaline phosphatase is associated with the incidence of hip fracture and mortality among patients receiving hemodialysis in Japan. Nephrol Dial Transplant 29(8):1532–1538
PubMed
Article
CAS
Google Scholar
Shantouf R, Kovesdy C, Kim Y, Ahmadi N, Luna A, Luna C, Rambod M, Nissenson A, Budoff M, Kalantar-Zadeh K (2009) Association of serum alkaline phosphatase with coronary artery calcification in maintenance hemodialysis patients. Clin J Am Soc Nephrol 4(6):1106–1114
PubMed
PubMed Central
Article
CAS
Google Scholar
Chen J, Mohler E, Xie D, Shlipak M, Townsend R, Appel L, Ojo A, Schreiber M, Nessel L, Zhang X, Raj D, Strauss L, Lora C, Rahman M, Hamm L, He J, CRIC Study Investigators. (2016). Traditional and non-traditional risk factors for incident peripheral arterial disease among patients with chronic kidney disease. Nephrol Dial Transplant 31 (7): 1145–1151
Park J, Kovesdy C, Duong U, Streja E, Rambod M, Nissenson A, Sprague S, Kalantar-Zadeh K (2010) Association of serum alkaline phosphatase and bone mineral density in maintenance hemodialysis patients. Hemodial Int 14(2):182–192
PubMed
PubMed Central
Article
Google Scholar
Kalantar-Zadeh K, Lee G, Miller J, Streja E, Jing J, Robertson J, Kovesdy C (2009) Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in hemodialysis patients. Am J Kidney Dis 53(5):823–834
PubMed
PubMed Central
Article
CAS
Google Scholar
Bergman A, Qureshi A, Haarhaus M, Lindholm B, Barany P, Heimburger O, Stenvinkel P, Anderstam B (2016) Total and bone-specific alkaline phosphatase are associated with bone mineral density over time in end-stage renal disease patients starting dialysis. J Nephrol 1:1–8
Google Scholar
Regidor D, Kovesdy C, Mehrotra R, Rambod M, Jing J, McAllister C, Van Wyck D, Kopple J, Kalantar-Zadeh K (2008) Serum alkaline phosphatase predicts mortality among maintenance hemodialysis patients. J Am Soc Nephrol 19(11):2193 – 203
PubMed
PubMed Central
Article
CAS
Google Scholar
Floege J, Kim J, Ireland E, Chazot C, Drueke T, de Francisco A, Kronenberg F, Marcelli D, Passlick-Deetjen J, Schernthaner G, Fouqueray B, Wheeler D, ARO Investigators (2011). Serum iPTH, calcium and phosphate, and the risk of mortality in a European haemodialysis population. Nephrol Dial Transplant 26(6): 1948–1955
PubMed
Article
CAS
Google Scholar
Naves M, Passlick J, Guinsburg A, Marelli C, Fernández J, Rodríguez D, Cannata J (2011) Calcium, phosphorus, PTH and death rates in a large sample of dialysis patients from Latin America. The CORES Study. Nephrol Dial Transplant 26(6):1938–1947
Article
CAS
Google Scholar
Fernández-Martín JL, Martínez-Camblor P, Dionisi MP, Floege J, Ketteler M, London G, Locatelli F, Gorriz JL, Rutkowski B, Ferreira A, Bos WJ, Covic A, Rodríguez-García M, Sánchez JE, Rodríguez-Puyol D, Cannata-Andia JB; COSMOS group (2015). Improvement of mineral and bone metabolism markers is associated with better survival in haemodialysis patients: the COSMOS study. Nephrol Dial Transplant 30(9):1542–1551
PubMed
Article
CAS
Google Scholar
Lau W, Kalantar-Zadeh K, Kovesdy C, Mehrotra R (2014) Alkaline phosphatase: better than PTH as a marker of cardiovascular and bone disease? Hemodial Int 18(4):720–724
PubMed
Article
Google Scholar
Fahrleitner-Pammer A, Herberth J, Browning S, Obermayer-Pietsch B, Wirnsberger G, Holzer H, Dobnig H, Malluche H (2008) Bone markers predict cardiovascular events in chronic kidney disease. J Bone Miner Res 23(11):1850–1858
PubMed
Article
CAS
Google Scholar
Robinson-Cohen C, Katz R, Hoofnagle A, Cauley J, Furberg C, Robbins J, Chen Z, Siscovick D, de Boer I, Kestenbaum B (2011) Mineral metabolism markers and the long-term risk of hip fracture: the cardiovascular health study. J Clin Endocrinol Metab 96(7):2186–2193
PubMed
PubMed Central
Article
CAS
Google Scholar
David C, Bover J, Voiculet C, Peride I, Petcu L, Niculae A, Covic A, Checherita I (2016) Coronary risk score for mineral bone disease in chronic non-diabetic hemodialysis patients: results from a prospective pilot study. Int Urol Nephrol 18:1–12
Google Scholar
Beige J, Wendt R, Girndt M, Queck K, Fiedler R, Jehle P (2014) Association of serum alkaline phosphatase with mortality in non-selected European patients with CKD5D: an observational, three-centre survival analysis. BMJ Open 4(2):1–7
Article
Google Scholar
Soohoo M, Feng M, Obi Y, Streja E, Rhee C, Lau W, Wang J, Ravel V, Brunelli S, Kovesdy C, Kalantar-Zadeh K (2016) Changes in Markers of Mineral and Bone Disorders and Mortality in Incident Hemodialysis Patients. Am J Nephrol 43(2):85–96
PubMed
PubMed Central
Article
CAS
Google Scholar
Qiao J, Mertens R, Fishbein M, Geller SA (2003) Cartilaginous metaplasia in calcified diabetic peripheral vascular disease: Morphologic evidence of enchondral ossification. Human Pathol 34:402–407
Article
CAS
Google Scholar
Shroff R, McNair R, Figg N, Skepper J, Schurgers L, Gupta A, Hiorns M, Donald A, Deanfield J, Rees L, Shanahan C (2008) Dialysis Accelerates Medial Vascular Calcification in Part by Triggering Smooth Muscle Cell Apoptosis. Circulation 118:748–1757
Article
CAS
Google Scholar
El-Abbadi M, Pai A, Leaf E, Yang H, Bartley B, Quan K, Ingalls C, Liao H, Giachelli C (2009) Phosphate feeding induces arterial medial calcification in uremic mice: role of serum phosphorus, fibroblast growth factor-23, and osteopontin. Kidney Int 75:1297–1307
PubMed
PubMed Central
Article
CAS
Google Scholar
Nakano-Kurimoto R, Ikeda K, Uraoka M, Nakagawa Y, Yutaka K, Koide M, Takahashi T, Matoba S, Yamada H, Okigaki M, Matsubara H (2009) Replicative senescence of vascular smooth muscle cells enhances the calcification through initiating the osteoblastic transition. Am J Physiology Heart Circ Physiology 297(5):1673–1684
Article
CAS
Google Scholar
Zhu D, Mackenzie N, Millán J, Farquharson C, MacRae V (2011) The appearance and modulation of osteocyte marker expression during calcification of vascular smooth muscle cells. PLoS ONE 6(5):1–10
Article
CAS
Google Scholar
Shioi A, Katagi M, Okuno Y, Mori K, Jono S, Koyama H, Nishizawa Y (2002) Induction of bone-type alkaline phosphatase in human vascular smooth muscle cells: roles of tumor necrosis factor-alpha and oncostatin M derived from macrophages. Circulation Res 91(1):9–16
PubMed
Article
CAS
Google Scholar
Sheen C, Kuss P, Narisawa S, Yadav M, Nigro J, Wang W, Chhea T, Sergienko E, Kapoor K, Jackson M, Hoylaerts M, Pinkerton A, O’Neill W, Millán J (2015) Pathophysiological role of vascular smooth muscle alkaline phosphatase in medial artery calcification. J Bone Miner Res 30(5):824–836
PubMed
PubMed Central
Article
CAS
Google Scholar
Savinov Y, Salehi M, Yadav C, Radichev I, Millán L, Savinova V (2015) Transgenic overexpression of tissue-nonspecific alkaline phosphatase (TNAP) in vascular endothelium results in generalized arterial calcification. J Am Heart Assoc 4(12):1–13
Article
Google Scholar
Schoppet M, Shanahan M (2008) Role for alkaline phosphatase as an inducer of vascular calcification in renal failure? Kidney Int 73(9):989–991
PubMed
Article
CAS
Google Scholar
Murshed M, Harmey D, Millán L, McKee D, Karsenty G (2005) Unique coexpression in osteoblast of broadly expressed genes accounts for the spatial restriction of ECM mineralization to bone. Genes Dev 19(9):1093–1104
PubMed
PubMed Central
Article
CAS
Google Scholar
Watson E, Parhami F, Shin V, Demer L (1998) Fibronectin and collagen I matrixes promote calcification of vascular cells in vitro, whereas collagen IV matrix is inhibitory. Arterioescler Thromb Vasc Biol 18(12):1964–1971
Article
CAS
Google Scholar
Ishimura E, Okuno S, Okazaki H, Norimine K, Yamakawa K, Yamakawa T, Shoji S, Nishizawa Y, Inaba M (2014) Significant association between bone-specific alkaline phosphatase and vascular calcification of the hand arteries in male hemodialysis patients. Kidney Blood Press Res 39:299–307
PubMed
Article
CAS
Google Scholar
Iba K, Takada J, Yamashita T (2004) The serum level of bone-specific alkaline phosphatase activity is associated with aortic calcification in osteoporosis patients. J Bone Miner Metab 22(6):594–596
PubMed
Article
CAS
Google Scholar
Lomashvili K, Narisawa S, Millán J, O’Neill W (2014) Vascular calcification is dependent on plasma levels of pyrophosphate. Kidney Int 85(6):1351–1356
PubMed
PubMed Central
Article
CAS
Google Scholar
Joubert P, Ketteler M, Salcedo C, Perelló J (2016) Hypothesis: phytate is an important unrecognised nutrient and potential intravenous drug for preventing vascular calcification. Med Hypotheses 94:89–92
PubMed
Article
CAS
Google Scholar
Buades J, Sanchís P, Perelló J, Grases F (2016) Plant phosphates, phytate and pathological calcifications in chronic kidney disease. Nefrología 30:1–9
Google Scholar
Bover J, Ureña Torres P, Górriz J, Lloret M, da Silva I, Ruiz-García C, Chang P, Rodríguez M (2016) Cardiovascular calcifications in chronic kidney disease: potential therapeutic implications. Ballarín J Nefrología, 36(6):597–608
Google Scholar
Narisawa S, Harmey D, Yadav M, O’Neill W, Hoylaerts M, Millán J (2007) Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res 11:1700–1710
Article
Google Scholar
Dahl R, Sergienko E, Su Y, Mostofi Y, Yang L, Simao A, Narisawa S, Brown B, Mangravita-Novo A, Vicchiarelli M, Smith L, O’Neill W, Millán J, Cosford N (2009) Discovery and validation of a series of aryl sulfonamides as selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). J Medicinal Chemistry 21:6919–6925
Article
CAS
Google Scholar
Sidique S, Ardecky R, Su Y, Narisawa S, Brown B, Millán J, Sergienko E, Cosford N (2009) Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett 19(1):222–225
PubMed
Article
CAS
Google Scholar
Sergienko E, Su Y, Chan X, Brown B, Hurder A, Narisawa S, Millán J (2009) Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J Biomol Screen 7:824–837
Article
CAS
Google Scholar
Chung T, Sergienko E, Millán J (2010) Assay format as a critical success factor for identification of novel inhibitor chemotypes of tissue-nonspecific alkaline phosphatase from high-throughput screening. Molecules 5:3010–3037
Article
CAS
Google Scholar
Sergienko E, Millán J (2010) High-throughput screening of tissue-nonspecific alkaline phosphatase for identification of effectors with diverse modes of action. Nat Protoc 8:1431–1439
Article
CAS
Google Scholar
Linder C, Ek-Rylander B, Krumpel M, Norgård M, Narisawa S, Millán J, Andersson G, Magnusson P (2017) Bone alkaline phosphatase and tartrate-resistant acid phosphatase: potential co-regulators of bone mineralization. Calcif Tissue Int 101(1):92–101
Article
CAS
Google Scholar
Boström K, Tsao D, Shen S, Wang Y, Demer L (2001) Matrix GLA protein modulates differentiation induced by bone morphogenetic protein-2 in C3H10T1/2 cells. J Biol Chem 276(17):14044–14052
PubMed
Article
Google Scholar
Rawadi G, Vayssière B, Dunn F, Baron R, Roman-Roman S (2003) BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res 18(10):1842–1853
PubMed
Article
CAS
Google Scholar
Murali S, Roschger P, Zeitz U, Klaushofer K, Andrukhova O, Erben R (2016) FGF23 regulates bone mineralization in a 1,25(OH)2 D3 and Klotho-Independent manner. J Bone Miner Res 31(1):129–142
PubMed
Article
CAS
Google Scholar
Murali S, Andrukhova O, Clinkenbeard E, White K, Erben R (2016) Excessive Osteocytic FGF23 Secretion Contributes to Pyrophosphate Accumulation and Mineralization Defect in Hyp Mice. PLoS Biol 14(4):1–24
Article
CAS
Google Scholar
Martin S, Lin H, Ejimadu C, Lee T (2015) Tissue-nonspecific alkaline phosphatase as a target of sFRP2 in cardiac fibroblasts. Am J Physiol Cell Physiol 3:139–147
Article
CAS
Google Scholar
Ali A, Penny C, Paiker J, Psaras G, Ikram F, Crowther N (2006) The effect of alkaline phosphatase inhibitors on intracellular lipid accumulation in preadipocytes isolated from human mammary tissue. Ann Clin Biochem 43:207–213
PubMed
Article
CAS
Google Scholar
Sardiwal S, Magnusson P, Goldsmith D, Lamb E (2013) Bone alkaline phosphatase in CKD-mineral bone disorder. Am J Kidney Dis 4:810–822
Article
CAS
Google Scholar
Cheung C, Tan K, Lam K, Cheung B (2013) The relationship between glucose metabolism, metabolic syndrome, and bone-specific alkaline phosphatase: a structural equation modeling approach. J Clin Endocrinol Metab 98:3856–3863
PubMed
Article
CAS
Google Scholar
Kaliannan K, Hamarneh R, Economopoulos P, Nasrin S, Moaven O, Patel P, Malo S, Ray M, Abtahi M, Muhammad N, Raychowdhury A, Teshager A, Mohamed M, Moss K, Ahmed R, Hakimian S, Narisawa S, Millán L, Hohmann E, Warren S, Bhan K, Malo S, Hodin A (2013) Intestinal alkaline phosphatase prevents metabolic syndrome in mice. Proc Nat Acad Sci USA 110(17):7003–7008
PubMed
Article
Google Scholar
Malo S (2015) A high level of intestinal alkaline phosphatase is protective against Type 2 diabetes mellitus irrespective of obesity. EBioMedicine 2(12):2016–2023
PubMed
PubMed Central
Article
Google Scholar
Lips P, Duong T, Oleksik A, Black D, Cummings S, Cox D, Nickelsen T (2001) A global study of vitamin D status and parathyroid function in postmenopausal women with osteoporosis: baseline data from the multiple outcomes of raloxifene evaluation clinical trial. J Clin Endocrinol Metab 86:3008
Article
CAS
Google Scholar
Thomas M, Lloyd-Jones D, Thadhani R, Shaw A, Deraska D, Kitch B, Vamvakas E, Dick I, Prince R, Finkelstein J (1998) Hypovitaminosis D in medical inpatients. N Eng J Med 338:777–783
Article
CAS
Google Scholar
Wolf M, Shah A, Gutierrez O, Ankers E, Monroy M, Tamez H, Steele D, Chang Y, Camargo C, Tonelli M, Thadhani R (2007) Vitamin D levels and early mortality among incident hemodialysis patients. Kidney Int 72(8):1004–1013
PubMed
Article
CAS
Google Scholar
Belozeroff V, Goodman W, Ren L, Kalantar-Zadeh K (2009) Cinacalcet lowers serum alkaline phosphatase in maintenance hemodialysis patients. Clin J Am Soc Nephrol 4(3):673–679
PubMed
PubMed Central
Article
CAS
Google Scholar
Llach F, Yudd M (2001) Paricalcitol in dialysis patients with calcitriol-resistant secondary hyperparathyroidism. Am J Kidney Dis 38(5 Suppl 5):45–50
Article
Google Scholar
Palmer S, McGregor D, Macaskill P, Craig J, Elder G, Strippoli F (2007) Meta-analysis: vitamin D compounds in chronic kidney disease. Ann Intern Med 147(12):840–853
PubMed
Article
Google Scholar
Coyne D, Andress D, Amdahl M, Ritz E, de Zeeuw D (2013) Effects of paricalcitol on calcium and phosphate metabolism and markers of bone health in patients with diabetic nephropathy: results of the VITAL study. Nephrol Dial Transplant 28(9):2260–2268
PubMed
PubMed Central
Article
CAS
Google Scholar
Lomashvili K, Khawandi W, O’Neill C (2005) Reduced plasma pyrophosphate levels in hemodialysis patients. J Am Soc Nephrol 16(8):2495–2500
PubMed
Article
CAS
Google Scholar
Makar H, Sawires K, Farid M, Ali M, Schaalan M (2010) Effect of high-flux versus low-flux dialysis membranes on parathyroid hormone. Iran J Kidney Dis 4(4):327–332
PubMed
Google Scholar
López-González A, Grases F, Perello J, Tur F, Costa A, Monroy N, Mari B, Vicente T (2010) Phytate levels and bone parameters: a retrospective pilot clinical trial. Front Biosci 2:1093–1098
Google Scholar
Grases F, Sanchis P, Perello J, Isern B, Prieto R, Fernandez-Palomeque C, Fiol M, Bonnin O, Torres J (2006). Phytate (Myo-inositol hexakisphosphate) inhibits cardiovascular calcifications in rats. Front Biosci, (11): 136–142
Perelló J, Salcedo C, Joubert P, Canals A, Ferrer M (2015) First-time-in-human phase 1 clinical trial in healthy volunteers with SNF472, a novel inhibitor of vascular calcification. Nephrol Dial Transplant 30(suppl 3):iii592 (abstract)
Article
Google Scholar
Jansen R, Duijst S, Mahakena S, Sommer D, Szeri F, Váradi A, Plomp A, Bergen A, Oude R, Borst P, van de Wetering K (2014) ABCC6-mediated ATP secretion by the liver is the main source of the mineralization inhibitor inorganic pyrophosphate in the systemic circulation-brief report. Arterioscler Thromb Vasc Biol 34(9):1985–1989
PubMed
Article
CAS
Google Scholar
Pomozi V, Brampton C, Szeri F, Dedinszki D, Kozák E, van de Wetering K, Hopkins H, Martin L, Váradi A Le Saux (2016) Functional rescue of ABCC6 deficiency by 4-Phenylbutyrate therapy reduces dystrophic calcification in Abcc6-/- Mice. J Invest Dermatol 5:1–25
Google Scholar
Albright R, Stabach P, Cao W, Kavanagh D, Mullen I, Braddock A, Covo M, Tehan M, Yang G, Cheng Z, Bouchard K, Yu Z, Thorn S, Wang X, Folta-Stogniew E, Negrete A, Sinusas A, Shiloach J, Zubal G, Madri J, De La Cruz E, Braddock D (2015) ENPP1-Fc prevents mortality and vascular calcifications in rodent model of generalized arterial calcification of infancy. Albright Nature Commun 6:1–32
Google Scholar
Ho A, Johnson M, Kingsley D (2000) Role of the mouse ank gene in control of tissue calcification and arthritis. Science 289(5477):265–270
PubMed
Article
CAS
Google Scholar
Wang W, Xu J, Du B, Kirsch T (2005) Role of the progressive ankylosis gene (ank) in cartilage mineralization. Molecular Cellular Biology 25(1):312–323
PubMed
Article
CAS
Google Scholar
Gurley K, Chen H, Guenther C, Nguyen E, Rountree R, Schoor M, Kingsley D (2006) Mineral formation in joints caused by complete or joint-specific loss of ANK function. J Bone Miner Res 21(8):1238–1247
PubMed
Article
CAS
Google Scholar
Villa-Bellosta R, Rivera-Torres J, Osorio F, Acín-Pérez R, Enriquez J, López-Otín C, Andrés V (2013) Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation 127(24):2442–2451
PubMed
Article
CAS
Google Scholar
De Oliveira R, Louvet L, Riser B, Barreto F, Benchitrit J, Rezg R, Poirot S, Jorgetti V, Drüeke T, Massy Z (2015) Peritoneal delivery of sodium pyrophosphate blocks the progression of pre-existing vascular calcification in uremic apolipoprotein-E knockout mice. Calcif Tissue Int 97(2):179 – 92
PubMed
Article
CAS
Google Scholar
Marqués S, Buchet R, Popowycz F, Lemaire M, Mebarek S (2016) Synthesis of benzofuran derivatives as selective inhibitors of tissue-nonspecific alkaline phosphatase: effects on cell toxicity and osteoblast-induced mineralization. Bioorg Med Chem Lett 26(5):1457–1459
PubMed
Article
CAS
Google Scholar
Picaud S, Wells C, Felletar I, Brotherton D, Martin S, Savitsky P, Diez-Dacal B, Philpott M, Bountra C, Lingard H, Fedorov O, Müller S, Brennan E, Knapp S, Filippakopoulos P (2013) RVX-208, an inhibitor of BET transcriptional regulators with selectivity for the second bromodomain. Proc Nat Acad Sci USA 110(49):19754–19759
PubMed
Article
CAS
Google Scholar
Gilham D, Wasiak S, Tsujikawa L, Halliday C, Norek K, Patel R, Kulikowski E, Johansson J, Sweeney M, Wong N (2016) RVX-208, a BET-inhibitor for treating atherosclerotic cardiovascular disease, raises ApoA-I/HDL and represses pathways that contribute to cardiovascular disease. Atheroscler 247:48–57
Article
CAS
Google Scholar
Kalantar-Zadeh K et al (2015) Alkaline phosphatase lowering by selective bet inhibition, a novel mechanism for mace reduction in high risk cvd, diabetes and CKD patients — a post-hoc analysis of phase 2b studies with RVX-208. J Am Soc Nephrol 26:227A
Google Scholar
Wong N, Kalantar-Zadeh K, Kulikowski E, Wasiak S, Gilham D, Halliday C, Sweeney M, Johansson J (2016) SP071 Apabetalone (RVX-208), a selective bromodomain and extra-terminal (BET) protein inhibitor, decreases abundance and activity of complement proteins in vitro, in mice and in clinical studies. Nephrol Dial Transplant 31(suppl 1):i109
Article
Google Scholar
Kausik R (Estimated study completion data October 2018). Phase A, Multi-Center III, Double-Blind, Randomized, Parallel Group, Placebo-Controlled Clinical Trial in High-Risk Type 2 Diabetes Mellitus (T2DM) Subjects With Coronary Artery Disease (CAD) to Determine Whether Bromodomain Extraterminal Domain (BET) Inhibition Treatment With RVX000222 Increases. the Time to Major Adverse Cardiovascular Events (MACE)
Gasque C, Foster L, Kuss P, Yadav C, Liu J, Kiffer-Moreira T, van Elsas A, Hatch N, Somerman J, Millán L (2015) Improvement of the skeletal and dental hypophosphatasia phenotype in Alpl-/- mice by administration of soluble (non-targeted) chimeric alkaline phosphatase. Bone 72:137–147
PubMed
Article
CAS
Google Scholar
Peters E, Mehta L, Murray T, Hummel J, Joannidis M, Kellum A, Arend J, Pickkers P (2016) Study protocol for a multicentre randomised controlled trial: Safety, Tolerability, efficacy and quality of life Of a human recombinant alkaline Phosphatase in patients with sepsis-associated Acute Kidney Injury (STOP-AKI). BMJ Open 6(9):e012371
PubMed
PubMed Central
Article
Google Scholar
Peters E, Geraci S, Heemskerk S, Wilmer J, Bilos A, Kraenzlin B, Gretz N, Pickkers P, Masereeuw R (2015) Alkaline phosphatase protects against renal inflammation through dephosphorylation of lipopolysaccharide and adenosine triphosphate. Br J Pharmacol 172(20):4932–4945
PubMed
PubMed Central
Article
CAS
Google Scholar
Peters E, Ergin B, Kandil A, Gurel-Gurevin E, van Elsas A, Masereeuw R, Pickkers P, Ince C (2016) Effects of a human recombinant alkaline phosphatase on renal hemodynamics, oxygenation and inflammation in two models of acute kidney injury. Toxicol Appl Pharmacol 313:88–96
PubMed
Article
CAS
Google Scholar
Ghosh S, Gehr W, Ghosh S (2014) Curcumin and chronic kidney disease (CKD): major mode of action through stimulating endogenous intestinal alkaline phosphatase. Molecules 19(12):20139–20156
PubMed
Article
CAS
Google Scholar
Ghosh S, Bie J, Wang J, Ghosh S (2014) Oral supplementation with non-absorbable antibiotics or curcumin attenuates western diet-induced atherosclerosis and glucose intolerance in LDLR-/- mice–role of intestinal permeability and macrophage activation. PLoS One 9(9):e108577: 1–9
Google Scholar
Millán L, Whyte P (2016) Alkaline Phosphatase and Hypophosphatasia. Calcif Tissue Int 98(4):398–416
PubMed
Article
CAS
Google Scholar
Sardiwal S, Gardham C, Coleman A, Stevens P, Delaney M, Lamb E (2012) Bone-specific alkaline phosphatase concentrations are less variable than those of parathyroid hormone in stable hemodialysis patients. Kidney Int 82(1):100–105
PubMed
PubMed Central
Article
CAS
Google Scholar
Garrett G, Sardiwal S, Lamb E, Goldsmith D (2013) PTH–a particularly tricky hormone: why measure it at all in kidney patients? Clin J Am Soc Nephrol 8(2):299–312
PubMed
Article
CAS
Google Scholar
Sprague S, Moe S (2013) The Case for Routine Parathyroid Hormone Monitoring. Clin J Am Soc Nephrol 8(2):313–318
PubMed
Article
CAS
Google Scholar
Gardham C, Stevens E, Delaney P, LeRoux M, Coleman A, Lamb J (2010) Variability of parathyroid hormone and other markers of bone mineral metabolism in patients receiving hemodialysis. Clin J Am Soc Nephrol 5(7):1261–1267
PubMed
PubMed Central
Article
CAS
Google Scholar