Skip to main content

Advertisement

Log in

Gut Microbiota and IGF-1

  • Review
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Microbiota and their hosts have coevolved for millions of years. Microbiota are not only critical for optimal development of the host under normal physiological growth, but also important to ensure proper host development during nutrient scarcity or disease conditions. A large body of research has begun to detail the mechanism(s) of how microbiota cooperate with the host to maintain optimal health status. One crucial host pathway recently demonstrated to be modulated by microbiota is that of the growth factor insulin like growth factor 1 (IGF-1). Gut microbiota are capable of dynamically modulating circulating IGF-1 in the host, with the majority of data suggesting that microbiota induce host IGF-1 synthesis to influence growth. Microbiota-derived metabolites such as short chain fatty acids are sufficient to induce IGF-1. Whether microbiota induction of IGF-1 is mediated by the difference in growth hormone expression or the host sensitivity to growth hormone is still under investigation. This review summarizes the current data detailing the interaction between gut microbiota, IGF-1 and host development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, Nielsen T, Pons N, Levenez F, Yamada T, Mende DR, Li J, Xu J, Li S, Li D, Cao J, Wang B, Liang H, Zheng H, Xie Y, Tap J, Lepage P, Bertalan M, Batto JM, Hansen T, Le Paslier D, Linneberg A, Nielsen HB, Pelletier E, Renault P, Sicheritz-Ponten T, Turner K, Zhu H, Yu C, Li S, Jian M, Zhou Y, Li Y, Zhang X, Li S, Qin N, Yang H, Wang J, Brunak S, Dore J, Guarner F, Kristiansen K, Pedersen O, Parkhill J, Weissenbach J, Meta HITC., Bork P, Ehrlich SD, Wang J (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. https://doi.org/10.1038/nature08821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Morgan XC, Segata N, Huttenhower C (2013) Biodiversity and functional genomics in the human microbiome. Trends Genet 29(1):51–58. https://doi.org/10.1016/j.tig.2012.09.005

    Article  CAS  PubMed  Google Scholar 

  3. Hildebrand F, Nguyen TL, Brinkman B, Yunta RG, Cauwe B, Vandenabeele P, Liston A, Raes J (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14(1):R4. https://doi.org/10.1186/gb-2013-14-1-r4

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bashiardes S, Zilberman-Schapira G, Elinav E (2016) Use of metatranscriptomics in microbiome research. Bioinform Biol Insights 10:19–25. https://doi.org/10.4137/BBI.S34610

    Article  PubMed  PubMed Central  Google Scholar 

  5. Luan H, Wang X, Cai Z (2017) Mass spectrometry-based metabolomics: targeting the crosstalk between gut microbiota and brain in neurodegenerative disorders. Mass Spectrom Rev. https://doi.org/10.1002/mas.21553

    PubMed  Google Scholar 

  6. Postler TS, Ghosh S (2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130. https://doi.org/10.1016/j.cmet.2017.05.008

    Article  CAS  PubMed  Google Scholar 

  7. Matsumoto M, Kibe R, Ooga T, Aiba Y, Kurihara S, Sawaki E, Koga Y, Benno Y (2012) Impact of intestinal microbiota on intestinal luminal metabolome. Sci Rep 2:233. https://doi.org/10.1038/srep00233

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (2009) Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA 106(10):3698–3703. https://doi.org/10.1073/pnas.0812874106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (2014) Minireview: gut microbiota: the neglected endocrine organ. Mol Endocrinol 28(8):1221–1238. https://doi.org/10.1210/me.2014-1108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414. https://doi.org/10.1016/j.cmet.2011.07.012

    Article  CAS  PubMed  Google Scholar 

  11. Yan J, Herzog JW, Tsang K, Brennan CA, Bower MA, Garrett WS, Sartor BR, Aliprantis AO, Charles JF (2016) Gut microbiota induce IGF-1 and promote bone formation and growth. Proc Natl Acad Sci U S A 113(47):E7554-E7563. https://doi.org/10.1073/pnas.1607235113

    Article  PubMed  PubMed Central  Google Scholar 

  12. Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857. https://doi.org/10.1126/science.aad8588

    Article  CAS  PubMed  Google Scholar 

  13. Kareem KY, Loh TC, Foo HL, Akit H, Samsudin AA (2016) Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet Res 12(1):163. https://doi.org/10.1186/s12917-016-0790-9

    Article  PubMed  PubMed Central  Google Scholar 

  14. Shin SC, Kim SH, You H, Kim B, Kim AC, Lee KA, Yoon JH, Ryu JH, Lee WJ (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674. https://doi.org/10.1126/science.1212782

    Article  CAS  PubMed  Google Scholar 

  15. Avella MA, Place A, Du SJ, Williams E, Silvi S, Zohar Y, Carnevali O (2012) Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PLoS ONE 7(9):e45572. https://doi.org/10.1371/journal.pone.0045572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu JP, Baker J, Perkins AS, Robertson EJ, Efstratiadis A (1993) Mice carrying null mutations of the genes encoding insulin-like growth factor I (Igf-1) and type 1 IGF receptor (Igf1r). Cell 75(1):59–72

    CAS  PubMed  Google Scholar 

  17. Baker J, Liu JP, Robertson EJ, Efstratiadis A (1993) Role of insulin-like growth factors in embryonic and postnatal growth. Cell 75(1):73–82

    Article  CAS  PubMed  Google Scholar 

  18. DeChiara TM, Efstratiadis A, Robertson EJ (1990) A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature 345(6270):78–80. https://doi.org/10.1038/345078a0

    Article  CAS  PubMed  Google Scholar 

  19. Camacho-Hubner C, Woods KA, Miraki-Moud F, Clark A, Savage MO (1999) Insulin-like growth factor-I deficiency caused by a partial deletion of the IGF-I gene: effects of rhIGF-I therapy. Growth Horm IGF Res 9(Suppl B):47–51 (discussion 51–42)

    Article  PubMed  Google Scholar 

  20. Wang Y, Cheng Z, Elalieh HZ, Nakamura E, Nguyen MT, Mackem S, Clemens TL, Bikle DD, Chang W (2011) IGF-1R signaling in chondrocytes modulates growth plate development by interacting with the PTHrP/Ihh pathway. J Bone Miner Res 26(7):1437–1446. https://doi.org/10.1002/jbmr.359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Menendez A, Fong C, ElAlieh HZ, Kubota T, Long R, Bikle DD (2015) IGF-I signaling in osterix-expressing cells regulates secondary ossification center formation, growth plate maturation, and metaphyseal formation during postnatal bone development. J Bone Miner Res 30(12):2239–2248. https://doi.org/10.1002/jbmr.2563

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Nishida S, Boudignon BM, Burghardt A, Elalieh HZ, Hamilton MM, Majumdar S, Halloran BP, Clemens TL, Bikle DD (2007) IGF-I receptor is required for the anabolic actions of parathyroid hormone on bone. J Bone Miner Res 22(9):1329–1337. https://doi.org/10.1359/jbmr.070517

    Article  CAS  PubMed  Google Scholar 

  23. Zhang M, Xuan S, Bouxsein ML, von Stechow D, Akeno N, Faugere MC, Malluche H, Zhao G, Rosen CJ, Efstratiadis A, Clemens TL (2002) Osteoblast-specific knockout of the insulin-like growth factor (IGF) receptor gene reveals an essential role of IGF signaling in bone matrix mineralization. J Biol Chem 277(46):44005–44012. https://doi.org/10.1074/jbc.M208265200

    Article  CAS  PubMed  Google Scholar 

  24. Van Wyk JJ, Smith EP (1999) Insulin-like growth factors and skeletal growth: possibilities for therapeutic interventions. J Clin Endocrinol Metab 84(12):4349–4354. https://doi.org/10.1210/jcem.84.12.6201

    Article  PubMed  Google Scholar 

  25. Yakar S, Liu JL, Stannard B, Butler A, Accili D, Sauer B, LeRoith D (1999) Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc Natl Acad Sci USA 96(13):7324–7329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhao G, Monier-Faugere MC, Langub MC, Geng Z, Nakayama T, Pike JW, Chernausek SD, Rosen CJ, Donahue LR, Malluche HH, Fagin JA, Clemens TL (2000) Targeted overexpression of insulin-like growth factor I to osteoblasts of transgenic mice: increased trabecular bone volume without increased osteoblast proliferation. Endocrinology 141(7):2674–2682. https://doi.org/10.1210/endo.141.7.7585

    Article  CAS  PubMed  Google Scholar 

  27. Sheng MH, Zhou XD, Bonewald LF, Baylink DJ, Lau KH (2013) Disruption of the insulin-like growth factor-1 gene in osteocytes impairs developmental bone growth in mice. Bone 52(1):133–144. https://doi.org/10.1016/j.bone.2012.09.027

    Article  CAS  PubMed  Google Scholar 

  28. Wang Y, Nishida S, Elalieh HZ, Long RK, Halloran BP, Bikle DD (2006) Role of IGF-I signaling in regulating osteoclastogenesis. J Bone Miner Res 21(9):1350–1358. https://doi.org/10.1359/jbmr.060610

    Article  CAS  PubMed  Google Scholar 

  29. van Coeverden SC, Netelenbos JC, de Ridder CM, Roos JC, Popp-Snijders C, Delemarre-van de Waal HA (2002) Bone metabolism markers and bone mass in healthy pubertal boys and girls. Clin Endocrinol 57(1):107–116

    Article  Google Scholar 

  30. Cemborain A, Castilla-Cortazar I, Garcia M, Quiroga J, Muguerza B, Picardi A, Santidrian S, Prieto J (1998) Osteopenia in rats with liver cirrhosis: beneficial effects of IGF-I treatment. J Hepatol 28(1):122–131

    Article  CAS  PubMed  Google Scholar 

  31. Yakar S, Rosen CJ, Beamer WG, Ackert-Bicknell CL, Wu Y, Liu JL, Ooi GT, Setser J, Frystyk J, Boisclair YR, LeRoith D (2002) Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest 110(6):771–781. https://doi.org/10.1172/JCI15463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guerra-Menendez L, Sadaba MC, Puche JE, Lavandera JL, de Castro LF, de Gortazar AR, Castilla-Cortazar I (2013) IGF-I increases markers of osteoblastic activity and reduces bone resorption via osteoprotegerin and RANK-ligand. J Transl Med 11:271. https://doi.org/10.1186/1479-5876-11-271

    Article  PubMed  PubMed Central  Google Scholar 

  33. Novince CM, Whittow CR, Aartun JD, Hathaway JD, Poulides N, Chavez MB, Steinkamp HM, Kirkwood KA, Huang E, Westwater C, Kirkwood KL (2017) Commensal gut microbiota immunomodulatory actions in bone marrow and liver have catabolic effects on skeletal homeostasis in health. Sci Rep 7(1):5747. https://doi.org/10.1038/s41598-017-06126-x

    Article  PubMed  PubMed Central  Google Scholar 

  34. Yan J, Charles JF (2017) Gut microbiome and bone: to build, destroy, or both? Curr Osteoporos Rep 15(4):376–384. https://doi.org/10.1007/s11914-017-0382-z

    Article  PubMed  Google Scholar 

  35. Schieber AM, Lee YM, Chang MW, Leblanc M, Collins B, Downes M, Evans RM, Ayres JS (2015) Disease tolerance mediated by microbiome E. coli involves inflammasome and IGF-1 signaling. Science 350(6260):558–563. https://doi.org/10.1126/science.aac6468

    Article  CAS  PubMed  Google Scholar 

  36. Kloting N, Koch L, Wunderlich T, Kern M, Ruschke K, Krone W, Bruning JC, Bluher M (2008) Autocrine IGF-1 action in adipocytes controls systemic IGF-1 concentrations and growth. Diabetes 57(8):2074–2082. https://doi.org/10.2337/db07-1538

    Article  PubMed  PubMed Central  Google Scholar 

  37. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F (2016) From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165(6):1332–1345. https://doi.org/10.1016/j.cell.2016.05.041

    Article  CAS  PubMed  Google Scholar 

  38. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, Glickman JN, Garrett WS (2013) The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341(6145):569–573. https://doi.org/10.1126/science.1241165

    Article  CAS  PubMed  Google Scholar 

  39. Arpaia N, Campbell C, Fan X, Dikiy S, van der Veeken J, deRoos P, Liu H, Cross JR, Pfeffer K, Coffer PJ, Rudensky AY (2013) Metabolites produced by commensal bacteria promote peripheral regulatory T-cell generation. Nature 504(7480):451–455. https://doi.org/10.1038/nature12726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Li JY, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, Darby TM, Weitzmann MN, Mulle JG, Gewirtz AT, Jones RM, Pacifici R (2016) Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest 126(6):2049–2063. https://doi.org/10.1172/JCI86062

    Article  PubMed  PubMed Central  Google Scholar 

  41. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, Parameswaran N, McCabe LR (2014) Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol 229(11):1822–1830. https://doi.org/10.1002/jcp.24636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McCabe L, Britton RA, Parameswaran N (2015) Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep 13(6):363–371. https://doi.org/10.1007/s11914-015-0292-x

    Article  PubMed  PubMed Central  Google Scholar 

  43. Fazeli PK, Klibanski A (2014) Determinants of GH resistance in malnutrition. J Endocrinol 220(3):R57-65. https://doi.org/10.1530/JOE-13-0477

    Article  PubMed  Google Scholar 

  44. Yan J, Takakura A, Zandi-Nejad K, Charles JF (2017) Mechanisms of gut microbiota-mediated bone remodeling. Gut Microbes. https://doi.org/10.1080/19490976.2017.1371893

    PubMed  Google Scholar 

Download references

Funding

This work was supported by NIH Grants AG046257 from the NIA, AR062590 from NIAMS, the Rheumatology Research Foundation and a Faculty Career Development Award from the Brigham and Women’s Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Yan.

Ethics declarations

Conflict of interest

Neither Dr. Jing Yan nor Dr. Julia Charles have anything to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, J., Charles, J.F. Gut Microbiota and IGF-1. Calcif Tissue Int 102, 406–414 (2018). https://doi.org/10.1007/s00223-018-0395-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-018-0395-3

Keywords

Navigation