Calcified Tissue International

, Volume 102, Issue 6, pp 657–665 | Cite as

Bone Geometry, Quality, and Bone Markers in Children with Type 1 Diabetes Mellitus

  • Roberto Franceschi
  • Silvia Longhi
  • Vittoria Cauvin
  • Angelo Fassio
  • Giuseppe Gallo
  • Fiorenzo Lupi
  • Petra Reinstadler
  • Antonio Fanolla
  • Davide Gatti
  • Giorgio Radetti
Original Research

Abstract

Adults with Type 1 diabetes mellitus show a high risk of bone fracture, probably as a consequence of a decreased bone mass and microarchitectural bone alterations. The aim of the study was to investigate the potential negative effects of type 1 diabetes on bone geometry, quality, and bone markers in a group of children and adolescents. 96 children, mean age 10.5 ± 3.1 years, agreed to participate to the study. Bone geometry was evaluated on digitalized X-rays at the level of the 2nd metacarpal bone. The following parameters were investigated and expressed as SDS: outer diameter (D), inner diameter (d), cortical area (CA), and medullary area (MA). Bone strength was evaluated as Bending Breaking Resistance Index (BBRI) from the geometric data. Bone turnover markers (PINP, CTX-I, and BAP), sclerostin, Dkk-1, PTH, and 25OH-Vitamin D were also assessed. A group of healthy 40 subjects of normal body weight and height served as controls for the bone markers. D (− 0.99 ± 0.98), d (− 0.41 ± 0.88), CA (− 0.85 ± 0.78), and MA (− 0.46 ± 0.78) were all significantly smaller than in controls (p < 0.01). BBRI was significantly lower (− 2.61 ± 2.18; p < 0.0001). PTH, PINP, and BAP were higher in the diabetic children. Multiple regression analysis showed that CA and D were influenced by insulin/Kg/day and by BMI, while d was influenced by PINP only. Type 1 diabetic children show smaller and weaker bones. The increased bone turnover could play a key role since it might amplify the deficit in bone strength associated with the inadequate osteoblastic activity caused by the disease itself.

Keywords

Bone geometry Bone quality Bone markers Children Sclerostin Dkk-1 

Notes

Acknowledgements

The authors would like to thank Caterina Fraccarollo for ELISA assays and the LURM (Laboratorio Universitario di Ricerca Medica) Research Centre of University of Verona, where this study was partially performed.

Compliance with Ethical Standards

Conflict of interest

(Roberto Franceschi, Silvia Longhi, Vittoria Cauvin, Angelo Fassio, Giuseppe Gallo, Fiorenzo Lupi, Petra Reinstadler, Antonio Fanolla, Davide Gatti, and Giorgio Radetti) have no financial conflicts of interest. The authors have full control of all primary data and they agree to allow the journal to review their data if requested.

Human and Animal Rights and Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2000. Informed consent was obtained from all patients for being included in the study.

References

  1. 1.
    Pan H, Wu N, Yang T, He W (2014) Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev 30:531–542CrossRefPubMedGoogle Scholar
  2. 2.
    Coe LM, Irwin R, Lippner D, McCabe LR (2011) The bone marrow microenvironment contributes to type I diabetes induced osteoblast death. J Cell Physiol 226:477–483CrossRefPubMedGoogle Scholar
  3. 3.
    Hie M, Iitsuka N, Otsuka T, Tsukamoto I (2011) Insulin-dependent diabetes mellitus decreases osteoblastogenesis associated with the inhibition of Wnt signaling through increased expression of Sost and Dkk1 and inhibition of Akt activation. Int J Mol Med 28:455–462PubMedGoogle Scholar
  4. 4.
    Patti A, Gennari L, Merlotti D, Dotta F, Nuti R (2013) Endocrine actions of osteocalcin. Int J Endocrinol.  https://doi.org/10.1155/2013/846480 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Armas LA, Akhter MP, Drincic A, Recker RR (2012) Trabecular bone histomorphometry in humans with type 1 diabetes mellitus. Bone 50:91–96CrossRefPubMedGoogle Scholar
  6. 6.
    Moreira CA, Dempster DW (2015) Bone histomorphometry in diabetes mellitus. Osteoporos Int 26:2559–2560CrossRefPubMedGoogle Scholar
  7. 7.
    Verroken C, Pieters W, Beddeleem L, Goemaere S, Zmierczak HG, Shadid S, Kaufman JM, Lapauw B (2017) Cortical bone size deficit in adult patients with type 1 diabetes mellitus. J Clin Endocrinol Metab 102:2887–2895CrossRefPubMedGoogle Scholar
  8. 8.
    Shanbhogue VV, Hansen S, Frost M, Jørgensen NR, Hermann AP, Henriksen JE, Brixen K (2015) Bone geometry, volumetric density, microarchitecture, and estimated bone strength assessed by HR-pQCT in adult patients with type 1 diabetes mellitus. J Bone Miner Res 30:2188–2199CrossRefPubMedGoogle Scholar
  9. 9.
    Turner CH, Burr DB (1993) Basic biomechanical measurements of bone: a tutorial. Bone 14:595–608CrossRefPubMedGoogle Scholar
  10. 10.
    Bechtold S, Dirlenbach I, Raile K, Noelle V, Bonfig W, Schwarz HP (2006) Early manifestation of type 1 diabetes in children is a risk factor for changed bone geometry: data using peripheral quantitative computed tomography. Pediatrics 118:e627–e634CrossRefPubMedGoogle Scholar
  11. 11.
    Saha MT, Sievänen H, Salo MK, Tulokas S, Saha HH (2008) Bone mass and structure in adolescents with type 1 diabetes compared to healthy peers. Osteoporos Int 20:1401–1406CrossRefPubMedGoogle Scholar
  12. 12.
    Bechtold S, Putzker S, Bonfig W, Fuchs O, Dirlenbach I, Schwarz HP (2007) Bone size normalizes with age in children and adolescents with type 1 diabetes. Diabetes Care 30:2046–2050CrossRefPubMedGoogle Scholar
  13. 13.
    Roggen I, Gies I, Vanbesien J, Louis O, De Schepper J (2013) Trabecular bone mineral density and bone geometry of the distal radius at completion of pubertal growth in childhood type 1 diabetes. Horm Res Paediatr 79:68–74CrossRefPubMedGoogle Scholar
  14. 14.
    Fowlkes JL, Bunn RC, Thrailkill KM (2011) Contributions of the insulin/insulin-like growth factor-1 axis to diabetic osteopathy. J Diabetes Metab 25:S1-S3Google Scholar
  15. 15.
    Fowlkes JL, Nyman JS, Bunn RC, Jo C, Wahl EC, Liu L, Cockrell GE, Morris LM, Lumpkin CK Jr, Thrailkill KM (2013) Osteo-promoting effects of insulin-like growth factor I (IGF-I) in a mouse model of type 1 diabetes. Bone 57:36–40CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Botolin S, McCabe LR (2007) Bone loss and increased bone adiposity in spontaneous and pharmacologically induced diabetic mice. Endocrinology 148:198–205CrossRefPubMedGoogle Scholar
  17. 17.
    Neumann T, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Sämann A (2014) High serum pentosidine but not esRAGE is associated with prevalent fractures in type 1 diabetes independent of bone mineral density and glycaemic control. Osteoporos Int 25:1527–1533CrossRefPubMedGoogle Scholar
  18. 18.
    Baroncelli GI, Federico G, Bertelloni S, Sodini F, De Terlizzi F, Cadossi R, Saggese G (2003) Assessment of bone quality by quantitative ultrasound of proximal phalanges of the hand and fracture rate in children and adolescents with bone and mineral disorders. Pediatr Res 54:125–136CrossRefPubMedGoogle Scholar
  19. 19.
    Catalano A, Pintaudi B, Morabito N, Di Vieste G, Giunta L, Bruno ML, Cucinotta D, Lasco A, Di Benedetto A (2014) Gender differences in sclerostin and clinical characteristics in type 1 diabetes mellitus. Eur J Endocrinol 171:293–300CrossRefPubMedGoogle Scholar
  20. 20.
    Chobot AP, Haffke A, Polanska J, Halaba ZP, Deja G, Jarosz-Chobot P, Pluskiewicz W (2012) Quantitative ultrasound bone measurements in pre-pubertal children with type 1 diabetes. Ultrasound Med Biol 38:1109–1115CrossRefPubMedGoogle Scholar
  21. 21.
    Faienza MF, Ventura A, Delvecchio M, Fusillo A, Piacente L, Aceto G, Colaianni G, Colucci S, Cavallo L, Grano M, Brunetti G (2017) High sclerostin and dickkopf-1 (DKK-1) Serum levels in children and adolescents with type 1 diabetes mellitus. J Clin Endocrinol Metab 102:1174–1181PubMedGoogle Scholar
  22. 22.
    Szulc P, Delmas PD (2008) Biochemical markers of bone turnover: potential use in the investigation and management of postmenopausal osteoporosis. Osteoporos Int 19:1683–1704CrossRefPubMedGoogle Scholar
  23. 23.
    Hygum K, Starup-Linde J, Harsløf T, Vestergaard P, Langdahl BL (2017) Mechanisms in endocrinology: diabetes mellitus, a state of low bone turnover—a systematic review and meta-analysis. Eur J Endocrinol 176:R137-R157CrossRefPubMedGoogle Scholar
  24. 24.
    Baron R, Kneissel M (2013) WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 19:179–192CrossRefPubMedGoogle Scholar
  25. 25.
    Neumann T, Hofbauer LC, Rauner M, Lodes S, Kästner B, Franke S, Kiehntopf M, Lehmann T, Müller UA, Wolf G, Hamann C, Sämann A (2014) Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol 80:649–655CrossRefGoogle Scholar
  26. 26.
    Gennari L, Merlotti D, Valenti R, Ceccarelli E, Ruvio M, Pietrini MG, Capodarca C, Franci MB, Campagna MS, Calabrò A, Cataldo D, Stolakis K, Dotta F, Nuti R (2012) Circulating sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab 97:1737–1744CrossRefPubMedGoogle Scholar
  27. 27.
    Tsentidis C, Gourgiotis D, Kossiva L, Marmarinos A, Doulgeraki A, Karavanaki K (2017) Increased levels of Dickkopf-1 are indicative of Wnt/β-catenin downregulation and lower osteoblast signaling in children and adolescents with type 1 diabetes mellitus, contributing to lower bone mineral density. Osteoporos Int 28:945–953CrossRefPubMedGoogle Scholar
  28. 28.
    Cacciari E, Milani S, Balsamo A, Spada E, Bona G, Cavallo L, Cerutti F, Gargantini L, Greggio N, Tonini G, Cicognani A (2006) Italian cross-sectional growth charts for height, weight and BMI (2 to 20 year). J Endocrinol Invest 29:581–593CrossRefPubMedGoogle Scholar
  29. 29.
    McCarthy HD, Jarrett KV, Crawley HF (2001) The development of waist circumference percentiles in British children aged 5.0–16.9 y. 55:902–907Google Scholar
  30. 30.
    Tanner JM (1962) Growth at adolescence, 2nd edn. Blackwell, OxfordGoogle Scholar
  31. 31.
    Greulich WW, Pyle SI (1959) Radiographic atlas of skeletal development of the hand and wrist, 2nd edn. Stanford University Press, StanfordGoogle Scholar
  32. 32.
    Zamberlan N, Radetti G, Paganini C, Gatti D, Rossini M, Braga V, Adami S (1996) Evaluation of cortical thickness and bone density by roentgen microdensitometry in growing males and females. Eur J Pediatr 155:377–382CrossRefPubMedGoogle Scholar
  33. 33.
    Genant HK, Engelke K, Fuerst T, Glüer CC, Grampp S, Harris ST, Jergas M, Lang T, Lu Y, Majumdar S, Mathur A, Takada M (1996) Noninvasive assessment of bone mineral and structure: state of the art. J Bone Miner Res 11:707–730CrossRefPubMedGoogle Scholar
  34. 34.
    Radetti G, Franceschi R, Adami S, Longhi S, Rossini M, Gatti D (2014) Higher circulating parathormone is associated with smaller and weaker bones in obese children. Calcif Tissue Int 95:1–7CrossRefPubMedGoogle Scholar
  35. 35.
    Gatti D, Colapietro F, Fracassi E, Sartori E, Antoniazzi F, Braga V, Rossini M, Adami S (2003) The volumetric bone density and cortical thickness in adult patients affected by osteogenesis imperfecta. J Clin Densitom 6:173–177CrossRefPubMedGoogle Scholar
  36. 36.
    Wilczek ML, Kälvesten J, Algulin J, Beiki O, Brismar TB (2013) Digital X-ray radiogrammetry of hand or wrist radiographs can predict hip fracture risk—a study in 5420 women and 2837 men. Eur Radiol 23:1383–1391CrossRefPubMedGoogle Scholar
  37. 37.
    Hamed EA, Faddan NHA, Elhafeez HAA, Sayed D (2011) Parathormone-25(OH)-vitamin D axis and bone status in children and adolescents with type 1 diabetes mellitus. Pediatr Diabetes 12(6):536–546PubMedGoogle Scholar
  38. 38.
    Neumann T, Hofbauer LC, Rauner M, Lodes S, Kästner B, Franke S et al (2014) Clinical and endocrine correlates of circulating sclerostin levels in patients with type 1 diabetes mellitus. Clin Endocrinol 80(5):649–655CrossRefGoogle Scholar
  39. 39.
    Aljabri KS, Bokhari SA, Khan MJ (2010) Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. Ann Saudi Med 30(6):454–458CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Buhary BM, Almohareb O, Aljohani N, Alrajhi S, Elkaissi S, Sherbeeni S et al (2017) Association of glycosylated hemoglobin levels with vitamin D status. J Clin Med Res 9(12):1013–1018CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Braga V, Gatti D, Rossini M, Colapietro F, Battaglia E, Viapiana O, Adami S (2004) Bone turnover markers in patients with osteogenesis imperfecta. Bone 34:1013–1016CrossRefPubMedGoogle Scholar
  42. 42.
    Rossini M, Gatti D, Adami S (2013) Involvement of WNT/β-catenin signaling in the treatment of osteoporosis. Calcif Tissue Int 93:121–132CrossRefPubMedGoogle Scholar
  43. 43.
    Fassio A, Rossini M, Viapiana O, Idolazzi L, Benini C, Vantaggiato E, Gatti D (2017) New strategies for the prevention and treatment of systemic and local bone loss; from pathophysiology to clinical application. Curr Pharm Des.  https://doi.org/10.2174/1381612823666170713104431 PubMedGoogle Scholar
  44. 44.
    Fricke O, Schoenau E (2007) The ‘Functional Muscle-Bone Unit’: probing the relevance of mechanical signals for bone development in children and adolescents. Growth Horm IGF Res 17:1–9CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Roberto Franceschi
    • 1
  • Silvia Longhi
    • 2
  • Vittoria Cauvin
    • 1
  • Angelo Fassio
    • 4
  • Giuseppe Gallo
    • 1
  • Fiorenzo Lupi
    • 2
  • Petra Reinstadler
    • 2
  • Antonio Fanolla
    • 3
  • Davide Gatti
    • 4
  • Giorgio Radetti
    • 2
    • 5
  1. 1.Department of PediatricsSanta Chiara Hospital TrentoTrentoItaly
  2. 2.Department of PediatricsGeneral Hospital BolzanoBolzanoItaly
  3. 3.Department of BiostatisticsRegional Hospital BolzanoBolzanoItaly
  4. 4.Rheumatology UnitUniversity of VeronaVeronaItaly
  5. 5.MarienklinikBolzanoItaly

Personalised recommendations