Calcified Tissue International

, Volume 102, Issue 4, pp 387–405 | Cite as

Gut Microbiota and Host Juvenile Growth

  • Martin SchwarzerEmail author
  • Maura StriginiEmail author
  • François Leulier


Good genes, good food, good friends. That is what parents hope will sustain and nurture the harmonious growth of their children. The impact of the genetic background and nutrition on postnatal growth has been in the spot light for long, but the good friends have come to the scene only recently. Among the good friends perhaps the most crucial ones are those that we are carrying within ourselves. They comprise the trillions of microbes that collectively constitute each individual’s intestinal microbiota. Indeed, recent epidemiological and field studies in humans, supported by extensive experimental data on animal models, demonstrate a clear role of the intestinal microbiota on their host’s juvenile growth, especially under suboptimal nutrient conditions. Genuinely integrative approaches applicable to invertebrate and vertebrate systems combine tools from genetics, developmental biology, microbiology, nutrition, and physiology to reveal how gut microbiota affects growth both positively and negatively, in healthy and pathological conditions. It appears that certain natural or engineered gut microbiota communities can positively impact insulin/IGF-1 and steroid hormone signaling, thus contributing to the host juvenile development and maturation.


Germ free Gnotobiology Microbiota Growth 



FL lab is supported by an ERC starting grant (FP7/2007-2013-N°309704), FINOVI foundation and the EMBO Young Investigator Program. MSch would like to acknowledge financial support from The Neuron Fund for the Support of Science (Neuron Fund). MSt was supported by Actions d’appui à la Recherche 2017 from UJM Saint-Etienne, University of Lyon.

Conflict of interest

Martin Schwarzer, Maura Strigini and François Leulier declare that they have no conflict of interest.

Glossary (Based on Encyclopedia Britannica and Wikipedia, with Modifications)


Microbial imbalance in the gastrointestinal tract. Change in numbers or proportion of different members of microbiome resulting in the adverse effects on the host

Environmental enteropathy

Chronic disease of small intestine characterized by gut inflammation and barrier disruption, malabsorption, and systemic inflammation in the absence of diarrhea. Endemic in the areas with poor sanitation and high enteropathogen burden


A condition in which all the forms of life associated with an organism can be accounted for. An extreme case is germ-free (axenic) animal which means organism with no associated living microbiota detectable by the up-to-date techniques


The assembly of different species that form an ecological unit. For the purpose of this review, it is used as the eukaryotic host plus all of its symbiotic microbes


Severe form of undernutrition when protein intake is insufficient


The collective genomes of the microorganisms that reside in an environmental niche


An ecological community of commensal, symbiotic, and pathogenic microorganisms found in and on a multicellular organism. It includes bacteria, archaea, protists, fungi, and viruses


Nidifugous organisms are those that leave the nest shortly after hatching or birth. They are born with open eyes and are capable of independent locomotion


Non-digestible oligo- and polysaccharide compounds that induce the growth or activity of certain microorganisms


Live microorganisms that, when administered in adequate amounts, confer a health benefit on the host

Somatotropic axis

One of the major hormonal systems regulating postnatal growth in vertebrates. It refers to the hormonal signaling from hypothalamus to anterior pituitary gland, resulting in the release of growth hormone, which in turn stimulates the production of insulin-like growth factor-1 in the liver and peripheral organs

Subtherapeutical antibiotic treatment

Subtherapeutic use of antibiotics in animal feed, as opposed to therapeutic or disease-treating use, enhances efficiency of livestock production by promoting growth. Specifically, through a still unknown mechanism, an animal on subtherapeutic doses of antibiotics will, on a lesser quantity of feed, gain an equal amount of weight as an untreated animal


  1. 1.
    Efstratiadis A (1998) Genetics of mouse growth. Int J Dev Biol 42(7):955–976PubMedGoogle Scholar
  2. 2.
    Wilson RS (1979) Twin growth: initial deficit, recovery, and trends in concordance from birth to nine years. ‎Ann Hum Biol 6(3):205–220PubMedCrossRefGoogle Scholar
  3. 3.
    Cooke L, Llewellyn C (2016) Nature and nurture in early feeding behavior. Nestle Nutr Inst Workshop Ser 85:155–165. PubMedCrossRefGoogle Scholar
  4. 4.
    Nijhout HF, Riddiford LM, Mirth C, Shingleton AW, Suzuki Y, Callier V (2014) The developmental control of size in insects. Wiley Interdiscip Rev Dev Biol 3(1):113–134. PubMedCrossRefGoogle Scholar
  5. 5.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975. PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, Ling AV, Devlin AS, Varma Y, Fischbach MA, Biddinger SB, Dutton RJ, Turnbaugh PJ (2014) Diet rapidly and reproducibly alters the human gut microbiome. Nature 505(7484):559–563. PubMedCrossRefGoogle Scholar
  7. 7.
    Brown EM, Wlodarska M, Willing BP, Vonaesch P, Han J, Reynolds LA, Arrieta MC, Uhrig M, Scholz R, Partida O, Borchers CH, Sansonetti PJ, Finlay BB (2015) Diet and specific microbial exposure trigger features of environmental enteropathy in a novel murine model. Nat Commun 6:7806. PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ, Cheng J, Guruge J, Talcott M, Bain JR, Muehlbauer MJ, Ilkayeva O, Wu C, Struckmeyer T, Barile D, Mangani C, Jorgensen J, Fan YM, Maleta K, Dewey KG, Ashorn P, Newgard CB, Lebrilla C, Mills DA, Gordon JI (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Schwarzer M, Makki K, Storelli G, Machuca-Gayet I, Srutkova D, Hermanova P, Martino ME, Balmand S, Hudcovic T, Heddi A, Rieusset J, Kozakova H, Vidal H, Leulier F (2016) Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science 351(6275):854–857PubMedCrossRefGoogle Scholar
  10. 10.
    Shin SC, Kim S-H, You H, Kim B, Kim AC, Lee K-A, Yoon J-H, Ryu J-H, Lee W-J (2011) Drosophila microbiome modulates host developmental and metabolic homeostasis via insulin signaling. Science 334(6056):670–674PubMedCrossRefGoogle Scholar
  11. 11.
    Smith MI, Yatsunenko T, Manary MJ, Trehan I, Mkakosya R, Cheng J, Kau AL, Rich SS, Concannon P, Mychaleckyj JC, Liu J, Houpt E, Li JV, Holmes E, Nicholson J, Knights D, Ursell LK, Knight R, Gordon JI (2013) Gut microbiomes of Malawian twin pairs discordant for kwashiorkor. Science 339(6119):548–554. PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Storelli G, Defaye A, Erkosar B, Hols P, Royet J, Leulier F (2011) Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab 14(3):403–414PubMedCrossRefGoogle Scholar
  13. 13.
    Mindell DP (1992) Phylogenetic consequences of symbioses: eukarya and eubacteria are not monophyletic taxa. Bio Syst 27(1):53–62Google Scholar
  14. 14.
    McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236. PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Smith K, McCoy KD, Macpherson AJ (2007) Use of axenic animals in studying the adaptation of mammals to their commensal intestinal microbiota. Semin Immunol 19(2):59–69. PubMedCrossRefGoogle Scholar
  16. 16.
    Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11(3):213–217. PubMedCrossRefGoogle Scholar
  17. 17.
    Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI (2011) Human nutrition, the gut microbiome and the immune system. Nature 474(7351):327–336. PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, Kim SG, Li H, Gao Z, Mahana D, Zarate Rodriguez JG, Rogers AB, Robine N, Loke P, Blaser MJ (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158(4):705–721. PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, Codelli JA, Chow J, Reisman SE, Petrosino JF, Patterson PH, Mazmanian SK (2013) Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell 155(7):1451–1463. PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, Deming C, Quinones M, Koo L, Conlan S, Spencer S, Hall JA, Dzutsev A, Kong H, Campbell DJ, Trinchieri G, Segre JA, Belkaid Y (2012) Compartmentalized control of skin immunity by resident commensals. Science 337(6098):1115–1119. PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    McFall-Ngai MJ, Ruby EG (1991) Symbiont recognition and subsequent morphogenesis as early events in an animal-bacterial mutualism. Science 254(5037):1491–1494PubMedCrossRefGoogle Scholar
  22. 22.
    Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. PubMedCrossRefGoogle Scholar
  23. 23.
    Buchon N, Broderick NA, Lemaitre B (2013) Gut homeostasis in a microbial world: insights from Drosophila melanogaster. Nat Rev Microbiol 11(9):615–626. PubMedCrossRefGoogle Scholar
  24. 24.
    Sekirov I, Russell SL, Antunes LC, Finlay BB (2010) Gut microbiota in health and disease. Physiol Rev 90(3):859–904. PubMedCrossRefGoogle Scholar
  25. 25.
    Human Microbiome Project C (2012) Structure, function and diversity of the healthy human microbiome. Nature 486(7402):207–214. CrossRefGoogle Scholar
  26. 26.
    Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, Wei D, Goldfarb KC, Santee CA, Lynch SV, Tanoue T, Imaoka A, Itoh K, Takeda K, Umesaki Y, Honda K, Littman DR (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139(3):485–498. PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Vijay-Kumar M, Aitken JD, Carvalho FA, Cullender TC, Mwangi S, Srinivasan S, Sitaraman SV, Knight R, Ley RE, Gewirtz AT (2010) Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328(5975):228–231. PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Leulier F, MacNeil LT, Lee WJ, Rawls JF, Cani PD, Schwarzer M, Zhao L, Simpson SJ (2017) Integrative physiology: at the crossroads of nutrition, microbiota, animal physiology, and human health. Cell Metab 25(3):522–534. PubMedCrossRefGoogle Scholar
  29. 29.
    Pasteur L (1885) Observations related to the previous notes from M. Duclaux. CR Acad Sci 100:68Google Scholar
  30. 30.
    Nuttal GHF, Thierfelder H (1895) Thierishes Leben ohne Bakterien im Verdauungskanal. Hoppe-Seyler’s Z Physiol Chem 21:109–121CrossRefGoogle Scholar
  31. 31.
    Gordon HA (1960) The germ-free animal. Its use in the study of “physiologic” effects of the normal microbial flora on the animal host. Am J Dig Dis 5:841–867PubMedCrossRefGoogle Scholar
  32. 32.
    Wollman E (1911) Sur l’élevage des mouches stériles. Ann Inst Pasteur 25:79–88Google Scholar
  33. 33.
    Reyniers JA (1957) The production and use of germ-free animals in experimental biology and medicine. Am J Vet Res 18(68):678–687PubMedGoogle Scholar
  34. 34.
    Trexler PC, Reynolds LI (1957) Flexible film apparatus for the rearing and use of germfree animals. Appl Microbiol 5(6):406–412PubMedPubMedCentralGoogle Scholar
  35. 35.
    Faith JJ, McNulty NP, Rey FE, Gordon JI (2011) Predicting a human gut microbiota’s response to diet in gnotobiotic mice. Science 333(6038):101–104. PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Falk PG, Hooper LV, Midtvedt T, Gordon JI (1998) Creating and maintaining the gastrointestinal ecosystem: what we know and need to know from gnotobiology. Microbiol Mol Biol Rev 62(4):1157–1170PubMedPubMedCentralGoogle Scholar
  37. 37.
    Ma D, Storelli G, Mitchell M, Leulier F (2015) Studying host-microbiota mutualism in Drosophila: harnessing the power of gnotobiotic flies. Biomed J 38(4):285–293. PubMedCrossRefGoogle Scholar
  38. 38.
    Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, Rossmann P, Hrncir T, Kverka M, Zakostelska Z, Klimesova K, Pribylova J, Bartova J, Sanchez D, Fundova P, Borovska D, Srutkova D, Zidek Z, Schwarzer M, Drastich P, Funda DP (2011) The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol 8(2):110–120. PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34. PubMedCrossRefGoogle Scholar
  40. 40.
    Bakula M (1969) The persistence of a microbial flora during postembryogenesis of Drosophila melanogaster. J Invertebr Pathol 14(3):365–374PubMedCrossRefGoogle Scholar
  41. 41.
    Houthoofd K, Braeckman BP, Lenaerts I, Brys K, De Vreese A, Van Eygen S, Vanfleteren JR (2002) Axenic growth up-regulates mass-specific metabolic rate, stress resistance, and extends life span in Caenorhabditis elegans. Exp Gerontol 37(12):1371–1378PubMedCrossRefGoogle Scholar
  42. 42.
    Kwong WK, Moran NA (2016) Gut microbial communities of social bees. Nat Rev Microbiol 14(6):374–384. PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Loso T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA 110(9):3229–3236PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Brown SD, Moore MW (2012) The International Mouse Phenotyping Consortium: past and future perspectives on mouse phenotyping. Mamm Genome 23(9–10):632–640. PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Chandler JA, Lang JM, Bhatnagar S, Eisen JA, Kopp A (2011) Bacterial communities of diverse Drosophila species: ecological context of a host-microbe model system. PLoS Genet 7(9):e1002272. PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ryu JH, Kim SH, Lee HY, Bai JY, Nam YD, Bae JW, Lee DG, Shin SC, Ha EM, Lee WJ (2008) Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 319(5864):777–782. PubMedCrossRefGoogle Scholar
  47. 47.
    Wong CN, Ng P, Douglas AE (2011) Low-diversity bacterial community in the gut of the fruitfly Drosophila melanogaster. Environ Microbiol 13(7):1889–1900. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Hoang D, Kopp A, Chandler JA (2015) Interactions between Drosophila and its natural yeast symbionts-Is Saccharomyces cerevisiae a good model for studying the fly-yeast relationship? PeerJ 3:e1116. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Webster CL, Waldron FM, Robertson S, Crowson D, Ferrari G, Quintana JF, Brouqui JM, Bayne EH, Longdon B, Buck AH, Lazzaro BP, Akorli J, Haddrill PR, Obbard DJ (2015) The discovery, distribution, and evolution of viruses associated with Drosophila melanogaster. PLoS Biol 13(7):e1002210. PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Wong AC, Vanhove AS, Watnick PI (2016) The interplay between intestinal bacteria and host metabolism in health and disease: lessons from Drosophila melanogaster. Dis Model Mech 9(3):271–281. PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Martino ME, Ma D, Leulier F (2017) Microbial influence on Drosophila biology. Curr Opin Microbiol 38:165–170. PubMedCrossRefGoogle Scholar
  52. 52.
    Layalle S, Arquier N, Leopold P (2008) The TOR pathway couples nutrition and developmental timing in Drosophila. Dev Cell 15(4):568–577. PubMedCrossRefGoogle Scholar
  53. 53.
    Boulan L, Milan M, Leopold P (2015) The systemic control of growth. Cold Spring Harbor Perspect Biol.
  54. 54.
    Ridley EV, Wong AC, Westmiller S, Douglas AE (2012) Impact of the resident microbiota on the nutritional phenotype of Drosophila melanogaster. PloS ONE 7(5):e36765. PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Tefit MA, Leulier F (2017) Lactobacillus plantarum favors the early emergence of fit and fertile adult Drosophila upon chronic undernutrition. J Exp Biol 220(Pt 5):900–907. PubMedPubMedCentralGoogle Scholar
  56. 56.
    Erkosar B, Storelli G, Mitchell M, Bozonnet L, Bozonnet N, Leulier F (2015) Pathogen virulence impedes mutualist-mediated enhancement of host juvenile growth via inhibition of protein digestion. Cell Host Microbe 18(4):445–455. PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Matos R, Schwarzer M, Gervais H, Courtin P, Joncour P, Gillet B, Ma D, Bulteau AL, Martino ME, Hughes S, Chapot-Chartier MP, Leulier F (2017) D-Alanylation of teichoic acids contributes to Lactobacillus plantarum-mediated Drosophila growth during chronic undernutrition. Nature microbiol. Google Scholar
  58. 58.
    Hang S, Purdy AE, Robins WP, Wang Z, Mandal M, Chang S, Mekalanos JJ, Watnick PI (2014) The acetate switch of an intestinal pathogen disrupts host insulin signaling and lipid metabolism. Cell Host Microbe 16(5):592–604. PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Chaston JM, Newell PD, Douglas AE (2014) Metagenome-wide association of microbial determinants of host phenotype in Drosophila melanogaster. mBio 5(5):e01631–e01614. PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Storelli G, Strigini M, Grenier T, Bozonnet L, Schwarzer M, Daniel C, Matos R, Leulier F (2017) Drosophila perpetuates nutritional mutualism by promoting the fitness of its intestinal symbiont Lactobacillus plantarum. Cell Metab. PubMedGoogle Scholar
  61. 61.
    Overend G, Luo Y, Henderson L, Douglas AE, Davies SA, Dow JA (2016) Molecular mechanism and functional significance of acid generation in the Drosophila midgut. Sci Rep 6:27242. PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Shanbhag SR, Vazhappilly AT, Sane A, D’Silva NM, Tripathi S (2017) Electrolyte transport pathways induced in the midgut epithelium of Drosophila melanogaster larvae by commensal gut microbiota and pathogens. J Physiol 595(2):523–539. PubMedCrossRefGoogle Scholar
  63. 63.
    Jones RM, Luo L, Ardita CS, Richardson AN, Kwon YM, Mercante JW, Alam A, Gates CL, Wu H, Swanson PA, Lambeth JD, Denning PW, Neish AS (2013) Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species. EMBO J 32(23):3017–3028. PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Jones RM, Desai C, Darby TM, Luo L, Wolfarth AA, Scharer CD, Ardita CS, Reedy AR, Keebaugh ES, Neish AS (2015) Lactobacilli modulate epithelial cytoprotection through the Nrf2 pathway. Cell Rep 12(8):1217–1225. PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Lee WJ (2008) Bacterial-modulated signaling pathways in gut homeostasis. Sci Signal 1(21):pe24. PubMedCrossRefGoogle Scholar
  66. 66.
    Deshpande SA, Yamada R, Mak CM, Hunter B, Soto Obando A, Hoxha S, Ja WW (2015) Acidic food pH increases palatability and consumption and extends drosophila lifespan. J Nutr 145(12):2789–2796. PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Yamada R, Deshpande SA, Bruce KD, Mak EM, Ja WW (2015) Microbes promote amino acid harvest to rescue undernutrition in Drosophila. Cell Rep. Google Scholar
  68. 68.
    Wong AC, Wang QP, Morimoto J, Senior AM, Lihoreau M, Neely GG, Simpson SJ, Ponton F (2017) Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila. Curr Biol 27(15):2397–2404 e2394. PubMedCrossRefGoogle Scholar
  69. 69.
    Dobson AJ, Chaston JM, Newell PD, Donahue L, Hermann SL, Sannino DR, Westmiller S, Wong AC, Clark AG, Lazzaro BP, Douglas AE (2015) Host genetic determinants of microbiota-dependent nutrition revealed by genome-wide analysis of Drosophila melanogaster. Nat Commun 6:6312. PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Newell PD, Douglas AE (2014) Interspecies interactions determine the impact of the gut microbiota on nutrient allocation in Drosophila melanogaster. Appl Environ Microbiol 80(2):788–796. PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Fischer CN, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA (2017) Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior.
  72. 72.
    Shapira M (2017) Host-microbiota interactions in Caenorhabditis elegans and their significance. Curr Opin Microbiol 38:142–147. PubMedCrossRefGoogle Scholar
  73. 73.
    Khanna A, Kumar J, Vargas MA, Barrett L, Katewa S, Li P, McCloskey T, Sharma A, Naude N, Nelson C, Brem R, Killilea DW, Mooney SD, Gill M, Kapahi P (2016) A genome-wide screen of bacterial mutants that enhance dauer formation in C. elegans. Sci Rep 6:38764. PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Yen CA, Curran SP (2016) Gene-diet interactions and aging in C. elegans. Exp Gerontol 86:106–112. PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    MacNeil LT, Watson E, Arda HE, Zhu LJ, Walhout AJ (2013) Diet-induced developmental acceleration independent of TOR and insulin in C. elegans. Cell 153(1):240–252. PubMedCrossRefGoogle Scholar
  76. 76.
    Qi B, Kniazeva M, Han M (2017) A vitamin-B2-sensing mechanism that regulates gut protease activity to impact animal’s food behavior and growth.
  77. 77.
    Wong AC, Dobson AJ, Douglas AE (2014) Gut microbiota dictates the metabolic response of Drosophila to diet. J Exp Biol 217(Pt 11):1894–1901. PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Sison-Mangus MP, Mushegian AA, Ebert D (2015) Water fleas require microbiota for survival, growth and reproduction. ISME J 9(1):59–67. PubMedCrossRefGoogle Scholar
  79. 79.
    Callens M, Macke E, Muylaert K, Bossier P, Lievens B, Waud M, Decaestecker E (2016) Food availability affects the strength of mutualistic host-microbiota interactions in Daphnia magna. ISME J 10(4):911–920. PubMedCrossRefGoogle Scholar
  80. 80.
    McFall-Ngai MJ (2014) The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu Rev Microbiol 68:177–194. PubMedCrossRefGoogle Scholar
  81. 81.
    Aschtgen MS, Lynch JB, Koch E, Schwartzman J, McFall-Ngai M, Ruby E (2016) Rotation of Vibrio fischeri flagella produces outer membrane vesicles that induce host development. J Bacteriol 198(16):2156–2165. PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Aschtgen MS, Wetzel K, Goldman W, McFall-Ngai M, Ruby E (2016) Vibrio fischeri-derived outer membrane vesicles trigger host development. Cell Microbiol 18(4):488–499. PubMedCrossRefGoogle Scholar
  83. 83.
    Schwartzman JA, Koch E, Heath-Heckman EA, Zhou L, Kremer N, McFall-Ngai MJ, Ruby EG (2015) The chemistry of negotiation: rhythmic, glycan-driven acidification in a symbiotic conversation. Proc Natl Acad Sci USA 112(2):566–571. PubMedCrossRefGoogle Scholar
  84. 84.
    Pickard JM, Chervonsky AV (2015) Intestinal fucose as a mediator of host-microbe symbiosis. J Immunol 194(12):5588–5593. PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Broderick NA (2016) Friend, foe or food? Recognition and the role of antimicrobial peptides in gut immunity and Drosophila-microbe interactions. Philos Trans R Soc London Ser B. Google Scholar
  86. 86.
    Breier BH (1999) Regulation of protein and energy metabolism by the somatotropic axis. Domest Anim Endocrinol 17(2–3):209–218PubMedCrossRefGoogle Scholar
  87. 87.
    Hartman ML, Veldhuis JD, Thorner MO (1993) Normal control of growth hormone secretion. Horm Res 40(1–3):37–47PubMedCrossRefGoogle Scholar
  88. 88.
    Bartke A, Sun LY, Longo V (2013) Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 93(2):571–598PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Baker JA, Ferguson MS, TenBroeck C (1942) Growth of platyfish (Platypoecilus maculatus) free from bacteria and other micro’organisms. Proc Soc Exp Biol Med 51(1):116–119. CrossRefGoogle Scholar
  90. 90.
    Melancon E, Gomez De La Torre Canny S, Sichel S, Kelly M, Wiles TJ, Rawls JF, Eisen JS, Guillemin K (2017) Best practices for germ-free derivation and gnotobiotic zebrafish husbandry. Methods Cell Biol 138:61–100. PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Grunwald DJ, Eisen JS (2002) Headwaters of the zebrafish—emergence of a new model vertebrate. Nat Rev Genet 3(9):717–724. PubMedCrossRefGoogle Scholar
  92. 92.
    Briggs JP (2002) The zebrafish: a new model organism for integrative physiology. Am J Physiol Regul Integr Comp Physiol 282(1):R3–R9. PubMedCrossRefGoogle Scholar
  93. 93.
    Rawls JF, Mahowald MA, Ley RE, Gordon JI (2006) Reciprocal gut microbiota transplants from zebrafish and mice to germ-free recipients reveal host habitat selection. Cell 127(2):423–433. PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Cheesman SE, Neal JT, Mittge E, Seredick BM, Guillemin K (2011) Epithelial cell proliferation in the developing zebrafish intestine is regulated by the Wnt pathway and microbial signaling via Myd88. Proc Natl Acad Sci USA 108(Suppl 1):4570–4577. PubMedCrossRefGoogle Scholar
  95. 95.
    Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288. PubMedCrossRefGoogle Scholar
  96. 96.
    Kanther M, Tomkovich S, Xiaolun S, Grosser MR, Koo J, Flynn EJ 3rd, Jobin C, Rawls JF (2014) Commensal microbiota stimulate systemic neutrophil migration through induction of serum amyloid A. Cell Microbiol 16(7):1053–1067. PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bentzon-Tilia M, Sonnenschein EC, Gram L (2016) Monitoring and managing microbes in aquaculture—towards a sustainable industry. Microb Biotechnol 9(5):576–584. PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Cabello FC (2006) Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol 8(7):1137–1144. PubMedCrossRefGoogle Scholar
  99. 99.
    Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dolz H, Millanao A, Buschmann AH (2013) Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol 15(7):1917–1942. PubMedCrossRefGoogle Scholar
  100. 100.
    Dhanaraj M, Haniffa MA, Singh SVA, Arockiaraj AJ, Ramakrishanan CM, Seetharaman S, Arthimanju R (2010) Effect of probiotics on growth performance of Koi Carp (Cyprinus carpio). J Appl Aquac 22(3):202–209. CrossRefGoogle Scholar
  101. 101.
    Suzer C, Çoban D, Kamaci HO, Saka Ş, Firat K, Otgucuoğlu Ö, Küçüksari H (2008) Lactobacillus spp. bacteria as probiotics in gilthead sea bream (Sparus aurata, L.) larvae: effects on growth performance and digestive enzyme activities. Aquaculture 280(1):140–145. CrossRefGoogle Scholar
  102. 102.
    Avella MA, Place A, Du SJ, Williams E, Silvi S, Zohar Y, Carnevali O (2012) Lactobacillus rhamnosus accelerates zebrafish backbone calcification and gonadal differentiation through effects on the GnRH and IGF systems. PloS ONE 7(9):e45572. PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cohendy M (1912) Experiences sur la vie sans microbes. Ann inst Pasteur 26:106–137Google Scholar
  104. 104.
    Reyniers JA (1959) The pure-culture concept and gnotobiotics. Ann N Y Acad Sci 78(1):3–16. CrossRefGoogle Scholar
  105. 105.
    Reyniers JA, Trexler PC et al (1948) A complete life-cycle in the germ-free bantam chicken. Nature 162(4132):67PubMedGoogle Scholar
  106. 106.
    Coates ME, Fuller R, Harrison GF, Lev M, Suffolk SF (1963) A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br J Nutr 17:141–150PubMedCrossRefGoogle Scholar
  107. 107.
    Forbes M, Park JT (1959) Growth of germ-free and conventional chicks: effect of diet, dietary penicillin and bacterial environment. J Nutr 67(1):69–84PubMedCrossRefGoogle Scholar
  108. 108.
    Furuse M, Yokota H (1985) Effect of the gut microflora on chick growth and utilisation of protein and energy at different concentrations of dietary protein. Br Poult Sci 26(1):97–104. PubMedCrossRefGoogle Scholar
  109. 109.
    Gordon HA (1959) Morphological and physiological characterization of germfree life*. Ann N Y Acad Sci 78 (1):208–220. PubMedCrossRefGoogle Scholar
  110. 110.
    Furuse M, Yokota H (1984) Protein and energy utilization in germ-free and conventional chicks given diets containing different levels of dietary protein. Br J Nutr 51(2):255–264PubMedCrossRefGoogle Scholar
  111. 111.
    Furuse M, Okumura J (1994) Nutritional and physiological characteristics in germ-free chickens. Compar Biochem Physiol A 109(3):547–556CrossRefGoogle Scholar
  112. 112.
    Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88(1):87–98. CrossRefGoogle Scholar
  113. 113.
    Roura E, Homedes J, Klasing KC (1992) Prevention of immunologic stress contributes to the growth-permitting ability of dietary antibiotics in chicks. J Nutr 122(12):2383–2390PubMedCrossRefGoogle Scholar
  114. 114.
    Fuller R, Houghton SB, Coates ME (1983) The effect of dietary penicillin on the growth of gnotobiotic chickens monoassociated with streptococcus faecium. Br Poult Sci 24(1):111–114. PubMedCrossRefGoogle Scholar
  115. 115.
    Butaye P, Devriese LA, Haesebrouck F (2003) Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin Microbiol Rev 16(2):175–188PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Luckey TD (1956) Mode of action of antibiotics—evidence from germfree birds. In: Proceedings, First International Conference on the Use of Antibiotics in Agriculture. The National Academies Press, Washington, DC.
  117. 117.
    Lutful Kabir SM (2009) The role of probiotics in the poultry industry. Int J Mol Sci 10(8):3531–3546. PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Kareem KY, Loh TC, Foo HL, Akit H, Samsudin AA (2016) Effects of dietary postbiotic and inulin on growth performance, IGF1 and GHR mRNA expression, faecal microbiota and volatile fatty acids in broilers. BMC Vet Res 12(1):163. PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Luckey TD (1963) Germfree life and gnotobiology. Academic Press, CambridgeGoogle Scholar
  120. 120.
    Teah BA (1960) Germ-free animal production at Lobund Institute. In: Proceedings of the 2nd symposium on gnotobiotic technology. University of Notre Dame Press, p 25Google Scholar
  121. 121.
    Pleasants JR (1959) Rearing germfree cesarean-born rats, mice, and rabbits through weaning. Ann N Y Acad Sci 78:116–126PubMedCrossRefGoogle Scholar
  122. 122.
    Wostmann BS (1959) Nutrition of the germfree mammal*. Ann N Y Acad Sci 78(1):175–182. PubMedCrossRefGoogle Scholar
  123. 123.
    Dubos RJ, Schaedler RW (1960) The effect of the intestinal flora on the growth rate of mice, and on their susceptibility to experimental infections. J Exp Med 111:407–417PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Martino ME, Bayjanov JR, Caffrey BE, Wels M, Joncour P, Hughes S, Gillet B, Kleerebezem M, van Hijum SA, Leulier F (2016) Nomadic lifestyle of Lactobacillus plantarum revealed by comparative genomics of 54 strains isolated from different habitats. Environ Microbiol 18(12):4974–4989. PubMedCrossRefGoogle Scholar
  125. 125.
    De Palma G, Lynch MDJ, Lu J, Dang VT, Deng Y, Jury J, Umeh G, Miranda PM, Pigrau Pastor M, Sidani S, Pinto-Sanchez MI, Philip V, McLean PG, Hagelsieb M-G, Surette MG, Bergonzelli GE, Verdu EF, Britz-McKibbin P, Neufeld JD, Collins SM, Bercik P (2017) Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice. Sci Transl Med 9(379):eaaf6397. PubMedCrossRefGoogle Scholar
  126. 126.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 341(6150):1241214. PubMedCrossRefGoogle Scholar
  127. 127.
    Blanton LV, Charbonneau MR, Salih T, Barratt MJ, Venkatesh S, Ilkaveya O, Subramanian S, Manary MJ, Trehan I, Jorgensen JM, Fan YM, Henrissat B, Leyn SA, Rodionov DA, Osterman AL, Maleta KM, Newgard CB, Ashorn P, Dewey KG, Gordon JI (2016) Gut bacteria that prevent growth impairments transmitted by microbiota from malnourished children. Science. PubMedCentralGoogle Scholar
  128. 128.
    Ahmed T, Hossain M, Mahfuz M, Choudhury N, Hossain MM, Bhandari N, Lin MM, Joshi PC, Angdembe MR, Wickramasinghe VP, Hossain SMM, Shahjahan M, Irianto SE, Soofi S, Bhutta Z (2014) Severe acute malnutrition in Asia. Food Nutrition Bulletin 35(2_suppl1):S14–S26. PubMedCrossRefGoogle Scholar
  129. 129.
    Kirk RG (2012) “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull History Med 86(2):237–275. CrossRefGoogle Scholar
  130. 130.
    Cho I, Yamanishi S, Cox L, Methe BA, Zavadil J, Li K, Gao Z, Mahana D, Raju K, Teitler I, Li H, Alekseyenko AV, Blaser MJ (2012) Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488(7413):621–626. PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, Chung J, Sohn J, Barber CM, Goldfarb DS, Raju K, Abubucker S, Zhou Y, Ruiz VE, Li H, Mitreva M, Alekseyenko AV, Weinstock GM, Sodergren E, Blaser MJ (2015) Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 6:7486. PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Stulp G, Barrett L (2016) Evolutionary perspectives on human height variation. Biol Rev Camb Philos Soc 91(1):206–234. PubMedCrossRefGoogle Scholar
  133. 133.
    Blaser MJ, Falkow S (2009) What are the consequences of the disappearing human microbiota? Nat Rev Microbiol 7(12):887–894. PubMedCrossRefGoogle Scholar
  134. 134.
    Cole TJ (2000) Secular trends in growth. Proc Nutr Soc 59(2):317–324PubMedCrossRefGoogle Scholar
  135. 135.
    Barratt MJ, Lebrilla C, Shapiro HY, Gordon JI (2017) The gut microbiota, food science, and human nutrition: a timely marriage. Cell Host Microbe 22(2):134–141. PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institut de Génomique Fonctionnelle de Lyon (IGFL), Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5242, Université Claude Bernard Lyon 1Lyon Cedex 07France
  2. 2.Laboratory of GnotobiologyInstitute of Microbiology of the Czech Academy of SciencesNový HrádekCzech Republic
  3. 3.INSERM, U1059, Sainbiose, Université de Lyon, Université Jean Monnet, Faculté de MédecineSaint-ÉtienneFrance

Personalised recommendations