Skip to main content

Advertisement

Log in

Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Calcium is essential for normal bone growth and development. Inadequate calcium intake increases the risk of osteoporosis and fractures. Kit ligand/c-Kit signaling plays an important role in regulating bone homeostasis. Mice with c-Kit mutations are osteopenic. The present study aimed to investigate whether impairment of or reduction in c-Kit signaling affects bone turnover during calcium deprivation. Three-week-old male WBB6F1/J-Kit W /Kit W-v /J (W/W v) mice with c-Kit point mutation, Kit W-sh/HNihrJaeBsmJ (W sh /W sh) mice with an inversion mutation in the regulatory elements upstream of the c-Kit promoter region, and their wild-type controls (WT) were fed either a normal (0.6% calcium) or a low calcium diet (0.02% calcium) for 3 weeks. μCT analysis indicated that both mutants fed normal calcium diet had significantly decreased cortical thickness and cancellous bone volume compared to WT. The low calcium diet resulted in a comparable reduction in cortical bone volume and cortical thickness in the W/W v and W sh /W sh mice, and their corresponding controls. As expected, the low calcium diet induced cancellous bone loss in the W/W v mice. In contrast, W sh /W sh cancellous bone did not respond to this diet. This c-Kit mutation prevented cancellous bone loss by antagonizing the low calcium diet-induced increase in osteoblast and osteoclast numbers in the W sh /W sh mice. Gene expression profiling showed that calcium deficiency increased Osx, Ocn, Alp, type I collagen, c-Fms, M-CSF, and RANKL/OPG mRNA expression in controls; however, the W sh mutation suppressed these effects. Our findings indicate that although calcium restriction increased bone turnover, leading to osteopenia, the decreased c-Kit expression levels in the W sh /W sh mice prevented the low calcium diet-induced increase in cancellous bone turnover and bone loss but not the cortical bone loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chabot B, Stephenson DA, Chapman VM, Besmer P, Bernstein A (1988) The proto-oncogene c-kit encoding a transmembrane tyrosine kinase receptor maps to the mouse W locus. Nature 335(6185):88–89. doi:10.1038/335088a0

    Article  CAS  PubMed  Google Scholar 

  2. Geissler EN, Ryan MA, Housman DE (1988) The dominant-white spotting (W) locus of the mouse encodes the c-kit proto-oncogene. Cell 55(1):185–192

    Article  CAS  PubMed  Google Scholar 

  3. Tajima Y, Huang EJ, Vosseller K, Ono M, Moore MA, Besmer P (1998) Role of dimerization of the membrane-associated growth factor kit ligand in juxtacrine signaling: the Sl17H mutation affects dimerization and stability-phenotypes in hematopoiesis. J Exp Med 187(9):1451–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lotinun S, Krishnamra N (2016) Disruption of c-Kit signaling in Kit(W-sh/W-sh) growing mice increases bone turnover. Sci Rep 6:31515. doi:10.1038/srep31515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lotinun S, Evans GL, Turner RT, Oursler MJ (2005) Deletion of membrane-bound steel factor results in osteopenia in mice. J Bone Miner Res 20(4):644–652. doi:10.1359/JBMR.041209

    Article  CAS  PubMed  Google Scholar 

  6. Nigrovic PA, Gray DH, Jones T, Hallgren J, Kuo FC, Chaletzky B, Gurish M, Mathis D, Benoist C, Lee DM (2008) Genetic inversion in mast cell-deficient (Wsh) mice interrupts corin and manifests as hematopoietic and cardiac aberrancy. Am J Pathol 173(6):1693–1701. doi:10.2353/ajpath.2008.080407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lieben L, Benn BS, Ajibade D, Stockmans I, Moermans K, Hediger MA, Peng JB, Christakos S, Bouillon R, Carmeliet G (2010) Trpv6 mediates intestinal calcium absorption during calcium restriction and contributes to bone homeostasis. Bone 47(2):301–308. doi:10.1016/j.bone.2010.04.595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. El Hajj Dib I, Gallet M, Mentaverri R, Sevenet N, Brazier M, Kamel S (2006) Imatinib mesylate (Gleevec) enhances mature osteoclast apoptosis and suppresses osteoclast bone resorbing activity. Eur J Pharmacol 551(1–3):27–33. doi:10.1016/j.ejphar.2006.09.007

    Google Scholar 

  9. Ando W, Hashimoto J, Nampei A, Tsuboi H, Tateishi K, Ono T, Nakamura N, Ochi T, Yoshikawa H (2006) Imatinib mesylate inhibits osteoclastogenesis and joint destruction in rats with collagen-induced arthritis (CIA). J Bone Miner Metab 24(4):274–282. doi:10.1007/s00774-006-0684-1

    Article  CAS  PubMed  Google Scholar 

  10. O’Sullivan S, Horne A, Wattie D, Porteous F, Callon K, Gamble G, Ebeling P, Browett P, Grey A (2009) Decreased bone turnover despite persistent secondary hyperparathyroidism during prolonged treatment with imatinib. J Clin Endocrinol Metab 94(4):1131–1136. doi:10.1210/jc.2008-2324

    Article  PubMed  Google Scholar 

  11. Grey A, O’Sullivan S, Reid IR, Browett P (2006) Imatinib mesylate, increased bone formation, and secondary hyperparathyroidism. N Engl J Med 355(23):2494–2495. doi:10.1056/NEJMc062388

    Article  CAS  PubMed  Google Scholar 

  12. O’Sullivan S, Naot D, Callon K, Porteous F, Horne A, Wattie D, Watson M, Cornish J, Browett P, Grey A (2007) Imatinib promotes osteoblast differentiation by inhibiting PDGFR signaling and inhibits osteoclastogenesis by both direct and stromal cell-dependent mechanisms. J Bone Miner Res 22(11):1679–1689. doi:10.1359/jbmr.070719

    Article  PubMed  Google Scholar 

  13. Wihlidal P, Karlic H, Pfeilstocker M, Klaushofer K, Varga F (2008) Imatinib mesylate (IM)-induced growth inhibition is associated with production of spliced osteocalcin-mRNA in cell lines. Leuk Res 32(3):437–443. doi:10.1016/j.leukres.2007.07.020

    Article  CAS  PubMed  Google Scholar 

  14. Vandyke K, Fitter S, Drew J, Fukumoto S, Schultz CG, Sims NA, Yeung DT, Hughes TP, Zannettino AC (2013) Prospective histomorphometric and DXA evaluation of bone remodeling in imatinib-treated CML patients: evidence for site-specific skeletal effects. J Clin Endocrinol Metab 98(1):67–76. doi:10.1210/jc.2012-2426

    Article  CAS  PubMed  Google Scholar 

  15. Aleman JO, Farooki A, Girotra M (2014) Effects of tyrosine kinase inhibition on bone metabolism: untargeted consequences of targeted therapies. Endocr Relat Cancer 21(3):R247–R259. doi:10.1530/ERC-12-0400

    Article  CAS  PubMed  Google Scholar 

  16. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R (2010) Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 25(7):1468–1486. doi:10.1002/jbmr.141

    Article  PubMed  Google Scholar 

  17. Dempster DW, Compston JE, Drezner MK, Glorieux FH, Kanis JA, Malluche H, Meunier PJ, Ott SM, Recker RR, Parfitt AM (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res 28(1):2–17. doi:10.1002/jbmr.1805

    Article  PubMed  PubMed Central  Google Scholar 

  18. Marx J (2004) Coming to grips with bone loss. Science 305(5689):1420–1422. doi:10.1126/science.305.5689.1420

    Article  CAS  PubMed  Google Scholar 

  19. Iwaniec UT, Turner RT (2013) Failure to generate bone marrow adipocytes does not protect mice from ovariectomy-induced osteopenia. Bone 53(1):145–153. doi:10.1016/j.bone.2012.11.034

    Article  PubMed  Google Scholar 

  20. Behrends DA, Cheng L, Sullivan MB, Wang MH, Roby GB, Zayed N, Gao C, Henderson JE, Martineau PA (2014) Defective bone repair in mast cell deficient mice with c-Kit loss of function. Eur cells Mater 28:209–221 discussion 221-202

    Article  CAS  Google Scholar 

  21. Liang J, Wu YL, Chen BJ, Zhang W, Tanaka Y, Sugiyama H (2013) The C-kit receptor-mediated signal transduction and tumor-related diseases. Int J Biol Sci 9(5):435–443. doi:10.7150/ijbs.6087

    Article  PubMed  PubMed Central  Google Scholar 

  22. Choeyprasert W, Yansomdet T, Natesirinilkul R, Wejaphikul K, Charoenkwan P (2017) Adverse effects of imatinib in children with chronic myelogenous leukemia. Pediatr Int 59(3):286–292. doi:10.1111/ped.13136

    Article  CAS  PubMed  Google Scholar 

  23. Berman E, Girotra M, Cheng C, Chanel S, Maki R, Shelat M, Strauss HW, Fleisher M, Heller G, Farooki A (2013) Effect of long term imatinib on bone in adults with chronic myelogenous leukemia and gastrointestinal stromal tumors. Leuk Res 37(7):790–794. doi:10.1016/j.leukres.2013.02.005

    Article  CAS  PubMed  Google Scholar 

  24. Giona F, Mariani S, Gnessi L, Moleti ML, Rea M, De Vellis A, Marzella D, Testi AM, Foa R (2013) Bone metabolism, growth rate and pubertal development in children with chronic myeloid leukemia treated with imatinib during puberty. Haematologica 98(3):e25–e27. doi:10.3324/haematol.2012.067447

    Article  PubMed  PubMed Central  Google Scholar 

  25. Narayanan KR, Bansal D, Walia R, Sachdeva N, Bhansali A, Varma N, Marwaha RK (2013) Growth failure in children with chronic myeloid leukemia receiving imatinib is due to disruption of GH/IGF-1 axis. Pediatr Blood Cancer 60(7):1148–1153. doi:10.1002/pbc.24397

    Article  CAS  PubMed  Google Scholar 

  26. Ceponis A, Konttinen YT, Takagi M, Xu JW, Sorsa T, Matucci-Cerinic M, Santavirta S, Bankl HC, Valent P (1998) Expression of stem cell factor (SCF) and SCF receptor (c-kit) in synovial membrane in arthritis: correlation with synovial mast cell hyperplasia and inflammation. J Rheumatol 25(12):2304–2314

    CAS  PubMed  Google Scholar 

  27. Ble C, Tsitsopoulos PP, Anestis DM, Hadjileontiadou S, Koletsa T, Papaioannou M, Tsonidis C (2016) Osteoporotic spinal burst fracture in a young adult as first presentation of systemic mastocytosis. J Surg Case Rep. doi:10.1093/jscr/rjw063

    PubMed  PubMed Central  Google Scholar 

  28. Benucci M, Bettazzi C, Bracci S, Fabiani P, Monsacchi L, Cappelletti C, Manfredi M, Ciolli S (2009) Systemic mastocytosis with skeletal involvement: a case report and review of the literature. Clin Cases Miner Bone Metab 6(1):66–70

    PubMed  PubMed Central  Google Scholar 

  29. Jonsson S, Standal T, Olsson B, Mellstrom D, Wadenvik H (2012) Secondary hyperparathyroidism but stable bone-mineral density in patients with chronic myeloid leukemia treated with imatinib. Am J Hematol 87(5):550–552. doi:10.1002/ajh.23155

    Article  PubMed  Google Scholar 

  30. Duttlinger R, Manova K, Chu TY, Gyssler C, Zelenetz AD, Bachvarova RF, Besmer P (1993) W-sash affects positive and negative elements controlling c-kit expression: ectopic c-kit expression at sites of kit-ligand expression affects melanogenesis. Development 118(3):705–717

    CAS  PubMed  Google Scholar 

  31. Stauffer M, Baylink D, Wergedal J, Rich C (1973) Decreased bone formation, mineralization, and enhanced resorption in calcium-deficient rats. Am J Physiol 225(2):269–276

    CAS  PubMed  Google Scholar 

  32. Barger-Lux MJ, Heaney RP (1993) Effects of calcium restriction on metabolic characteristics of premenopausal women. J Clin Endocrinol Metab 76(1):103–107. doi:10.1210/jcem.76.1.8421072

    CAS  PubMed  Google Scholar 

  33. Antic VN, Fleisch H, Muhlbauer RC (1996) Effect of bisphosphonates on the increase in bone resorption induced by a low calcium diet. Calcif Tissue Int 58(6):443–448

    Article  CAS  PubMed  Google Scholar 

  34. Tanimoto H, Lau KH, Nishimoto SK, Wergedal JE, Baylink DJ (1991) Evaluation of the usefulness of serum phosphatases and osteocalcin as serum markers in a calcium depletion-repletion rat model. Calcif Tissue Int 48(2):101–110

    Article  CAS  PubMed  Google Scholar 

  35. Akesson K, Lau KH, Johnston P, Imperio E, Baylink DJ (1998) Effects of short-term calcium depletion and repletion on biochemical markers of bone turnover in young adult women. J Clin Endocrinol Metab 83(6):1921–1927. doi:10.1210/jcem.83.6.4891

    CAS  PubMed  Google Scholar 

  36. Iwamoto J, Takeda T, Sato Y, Yeh JK (2004) Response of cortical and cancellous bones to mild calcium deficiency in young growing female rats: a bone histomorphometry study. Exp Anim 53(4):347–354

    Article  CAS  PubMed  Google Scholar 

  37. Lowe NM, Ellahi B, Bano Q, Bangash SA, Mitra SR, Zaman M (2011) Dietary calcium intake, vitamin D status, and bone health in postmenopausal women in rural Pakistan. J Health, Popul Nutr 29(5):465–470

    Article  Google Scholar 

  38. Thomas GP, Baker SU, Eisman JA, Gardiner EM (2001) Changing RANKL/OPG mRNA expression in differentiating murine primary osteoblasts. J Endocrinol 170(2):451–460

    Article  CAS  PubMed  Google Scholar 

  39. Boyce BF, Xing L (2007) The RANKL/RANK/OPG pathway. Curr Osteoporos Rep 5(3):98–104

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yasuko Takeyama and Jorge Alzate for processing and embedding bone samples for histomorphometry.

Funding

This work was supported by the NIDCR grant (R03 DE019819), the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University (CU-58-069-AS) and the Faculty of Dentistry, Chulalongkorn University (DRF 60004) to SL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sutada Lotinun.

Ethics declarations

Conflict of interest

SL, JS, SP and RB declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

The animals were housed at the Harvard Medical School and maintained in accordance with the Institutional Guideline for the Care and Use of Laboratory Animals. All procedures were approved by the Harvard Institutional Animal Care and Use Committee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotinun, S., Suwanwela, J., Poolthong, S. et al. Kit W-sh Mutation Prevents Cancellous Bone Loss during Calcium Deprivation. Calcif Tissue Int 102, 93–104 (2018). https://doi.org/10.1007/s00223-017-0334-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-017-0334-8

Keywords

Navigation