Abstract
Diabetes mellitus (DM) has been associated with increased bone fracture rates, impaired bone regeneration, delayed bone healing, and depressed osteogenesis. However, the plausible pathogenic mechanisms remain incompletely understood. The aim of the present systematic review was to investigate whether oxidative stress (OS) plays a role in altered characteristics of diabetic bone under in vivo conditions. An electronic search of the MEDLINE (via PubMed) and Embase databases was performed. In vivo animal studies involving DM and providing information regarding assessment of OS markers combined with analyses of bone histology/histomorphometry parameters were selected. A descriptive analysis of selected articles was performed. Ten studies were included in the present review. Both bone formation and bone resorption parameters were significantly decreased in the diabetic groups of animals compared to the healthy groups. This finding was consistent regardless of different animal/bone models employed or different evaluation periods. A statistically significant increase in systemic and/or local OS status was also emphasised in the diabetic groups in comparison to the healthy ones. Markers of OS were associated with histological and/or histomorphometric parameters, including decreased trabecular bone and osteoid volumes, suppressed bone formation, defective bone mineralisation, and reduced osteoclastic activity, in diabetic animals. Additionally, insulin and antioxidative treatment proved to be efficient in reversing the deleterious effects of high glucose and associated OS. The present findings support the hypotheses that OS in the diabetic condition contributes at least partially to defective bone features, and that antioxidative supplementation can be a valuable adjunctive strategy in treating diabetic bone disease, accelerating bone healing, and improving osteointegration.
Similar content being viewed by others
References
The Expert Committee on the Diagnosis and Classification of Diabetes Mellitus (1997) Report of the Expert Committee on the Diagnosis and Classification of Diabetes Mellitus. Diabetes Care 20(7):1183–1197
Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82. doi:10.2337/diaclin.26.2.77
De Leeuw I, Abs R (1977) Bone mass and bone density in maturity-type diabetics measured by the 125I photon-absorption technique. Diabetes 26(12):1130–1135
Cozen L (1972) Does diabetes delay fracture healing? Clin Orthop Relat Res 82:134–140
Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14(6):429–435. doi:10.1097/MED.0b013e3282f1cba3
Goodman WG, Hori MT (1984) Diminished bone formation in experimental diabetes. Relationship to osteoid maturation and mineralization. Diabetes 33(9):825–831
Follak N, Kloting I, Ganzer D, Merk H (2003) Scanning electron microscopic examinations on retarded bone defect healing in spontaneously diabetic BB/O(ttawa)K(arlsburg) rats. Histol Histopathol 18(1):111–120
von Wilmowsky C, Stockmann P, Harsch I, Amann K, Metzler P, Lutz R, Moest T, Neukam FW, Schlegel KA (2011) Diabetes mellitus negatively affects peri-implant bone formation in the diabetic domestic pig. J Clin Periodontol 38(8):771–779. doi:10.1111/j.1600-051X.2011.01746.x
Kayal RA, Tsatsas D, Bauer MA, Allen B, Al-Sebaei MO, Kakar S, Leone CW, Morgan EF, Gerstenfeld LC, Einhorn TA, Graves DT (2007) Diminished bone formation during diabetic fracture healing is related to the premature resorption of cartilage associated with increased osteoclast activity. J Bone Miner Res 22(4):560–568. doi:10.1359/jbmr.070115
Hamada Y, Fujii H, Fukagawa M (2009) Role of oxidative stress in diabetic bone disorder. Bone 45(Suppl 1):S35–S38. doi:10.1016/j.bone.2009.02.004
Giacco F, Brownlee M (2010) Oxidative stress and diabetic complications. Circ Res 107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545
Weidinger A, Kozlov AV (2015) Biological activities of reactive oxygen and nitrogen species: oxidative stress versus signal transduction. Biomolecules 5(2):472–484. doi:10.3390/biom5020472
Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J (2007) Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39(1):44–84. doi:10.1016/j.biocel.2006.07.001
Mody N, Parhami F, Sarafian TA, Demer LL (2001) Oxidative stress modulates osteoblastic differentiation of vascular and bone cells. Free Radic Biol Med 31(4):509–519
Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J (2011) Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal 15(11):2867–2908. doi:10.1089/ars.2010.3685
Grishko VI, Ho R, Wilson GL, Pearsall AW (2009) Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthr Cartil 17(1):107–113. doi:10.1016/j.joca.2008.05.009
Bai XC, Lu D, Bai J, Zheng H, Ke ZY, Li XM, Luo SQ (2004) Oxidative stress inhibits osteoblastic differentiation of bone cells by ERK and NF-kappaB. Biochem Biophys Res Commun 314(1):197–207
Bansal S, Siddarth M, Chawla D, Banerjee BD, Madhu SV, Tripathi AK (2012) Advanced glycation end products enhance reactive oxygen and nitrogen species generation in neutrophils in vitro. Mol Cell Biochem 361(1–2):289–296. doi:10.1007/s11010-011-1114-9
Wang X, Yu S, Wang CY, Wang Y, Liu HX, Cui Y, Zhang LD (2015) Advanced glycation end products induce oxidative stress and mitochondrial dysfunction in SH-SY5Y cells. In Vitro Cell Dev Biol Anim 51(2):204–209. doi:10.1007/s11626-014-9823-5
Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y (2009) Oxidative stress in bone remodelling and disease. Trends Mol Med 15(10):468–477. doi:10.1016/j.molmed.2009.08.004
Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. doi:10.1136/bmj.b2700
Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43. doi:10.1186/1471-2288-14-43
Retzepi M, Donos N (2010) The effect of diabetes mellitus on osseous healing. Clin Oral Implants Res 21(7):673–681. doi:10.1111/j.1600-0501.2010.01923.x
Ray PD, Huang BW, Tsuji Y (2012) Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal 24(5):981–990. doi:10.1016/j.cellsig.2012.01.008
Johansen JS, Harris AK, Rychly DJ, Ergul A (2005) Oxidative stress and the use of antioxidants in diabetes: linking basic science to clinical practice. Cardiovasc Diabetol 4:5. doi:10.1186/1475-2840-4-5
Bouillon R, Bex M, Van Herck E, Laureys J, Dooms L, Lesaffre E, Ravussin E (1995) Influence of age, sex, and insulin on osteoblast function: osteoblast dysfunction in diabetes mellitus. J Clin Endocrinol Metab 80(4):1194–1202. doi:10.1210/jcem.80.4.7714089
Colombo JS, Balani D, Sloan AJ, Crean SJ, Okazaki J, Waddington RJ (2011) Delayed osteoblast differentiation and altered inflammatory response around implants placed in incisor sockets of type 2 diabetic rats. Clin Oral Implants Res 22(6):578–586. doi:10.1111/j.1600-0501.2010.01992.x
Guan CC, Yan M, Jiang XQ, Zhang P, Zhang XL, Li J, Ye DX, Zhang FQ (2009) Sonic hedgehog alleviates the inhibitory effects of high glucose on the osteoblastic differentiation of bone marrow stromal cells. Bone 45(6):1146–1152. doi:10.1016/j.bone.2009.08.009
Lu H, Kraut D, Gerstenfeld LC, Graves DT (2003) Diabetes interferes with the bone formation by affecting the expression of transcription factors that regulate osteoblast differentiation. Endocrinology 144(1):346–352. doi:10.1210/en.2002-220072
Alikhani M, Alikhani Z, Boyd C, MacLellan CM, Raptis M, Liu R, Pischon N, Trackman PC, Gerstenfeld L, Graves DT (2007) Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways. Bone 40(2):345–353. doi:10.1016/j.bone.2006.09.011
Suh KS, Rhee SY, Jung WW, Kim NJ, Jang YP, Kim HJ, Kim MK, Choi YK, Kim YS (2013) Chrysanthemum zawadskii extract protects osteoblastic cells from highly reducing sugar-induced oxidative damage. Int J Mol Med 32(1):241–250. doi:10.3892/ijmm.2013.1371
Ma Y, Wang H (2012) PI3 K/Akt/FoxO: a novel participant in signal transduction in bone cells under mechanical stimulation. Cell Biol Int 36(10):923–926. doi:10.1042/CBI20120078
Weinberg E, Maymon T, Moses O, Weinreb M (2014) Streptozotocin-induced diabetes in rats diminishes the size of the osteoprogenitor pool in bone marrow. Diabetes Res Clin Pract 103(1):35–41. doi:10.1016/j.diabres.2013.11.015
Garrett IR, Boyce BF, Oreffo RO, Bonewald L, Poser J, Mundy GR (1990) Oxygen-derived free radicals stimulate osteoclastic bone resorption in rodent bone in vitro and in vivo. J Clin Investig 85(3):632–639. doi:10.1172/JCI114485
Fraser JH, Helfrich MH, Wallace HM, Ralston SH (1996) Hydrogen peroxide, but not superoxide, stimulates bone resorption in mouse calvariae. Bone 19(3):223–226
Fujii H, Hamada Y, Fukagawa M (2008) Bone formation in spontaneously diabetic Torii-newly established model of non-obese type 2 diabetes rats. Bone 42(2):372–379. doi:10.1016/j.bone.2007.10.007
Khan TS, Fraser L-A (2015) Type 1 diabetes and osteoporosis: from molecular pathways to bone phenotype. J Osteoporos 2015:174186. doi:10.1155/2015/174186
McCabe LR (2009) Switching fat from the periphery to bone marrow: why in Type I diabetes? Exp Rev Endocrinol Metab 4(3):203–207
Christopher MJ, Link DC (2008) Granulocyte colony-stimulating factor induces osteoblast apoptosis and inhibits osteoblast differentiation. J Bone Miner Res 23(11):1765–1774. doi:10.1359/JBMR.080612
Adil C, Aydin T, Taspinar O, Kiziltan H, Eris AH, Hocaoglu IT, Posul S, Kepekci M, Denizli E, Guler M (2015) Bone mineral density evaluation of patients with type 2 diabetes mellitus. J Phys Ther Sci 27(1):179–182. doi:10.1589/jpts.27.179
Fajardo RJ, Karim L, Calley VI, Bouxsein ML (2014) A review of rodent models of Type 2 diabetic skeletal fragility. J Bone Miner Res 29(5):1025–1040. doi:10.1002/jbmr.2210
Gomes PS, Fernandes MH (2011) Rodent models in bone-related research: the relevance of calvarial defects in the assessment of bone regeneration strategies. Lab Anim 45(1):14–24. doi:10.1258/la.2010.010085
Kesavulu MM, Giri R, Kameswara Rao B, Apparao C (2000) Lipid peroxidation and antioxidant enzyme levels in type 2 diabetics with microvascular complications. Diabetes Metab 26(5):387–392
Kumawat M, Sharma TK, Singh I, Singh N, Ghalaut VS, Vardey SK, Shankar V (2013) Antioxidant enzymes and lipid peroxidation in type 2 diabetes mellitus patients with and without nephropathy. N Am J Med Sci 5(3):213–219. doi:10.4103/1947-2714.109193
Bandeira SDM, Guedes GDS, da Fonseca LJS, Pires AS, Gelain DP, Moreira JCF, Rebelo LA, Vasconcelos SML, Goulart MOF (2012) Characterization of blood oxidative stress in type 2 diabetes mellitus patients: increase in lipid peroxidation and SOD activity. Oxid Med Cell Longev 2012:13. doi:10.1155/2012/819310
Shyng YC, Devlin H, Sloan P (2001) The effect of streptozotocin-induced experimental diabetes mellitus on calvarial defect healing and bone turnover in the rat. Int J Oral Maxillofac Surg 30(1):70–74. doi:10.1054/ijom.2000.0004
Giglio MJ, Giannunzio G, Olmedo D, Guglielmotti MB (2000) Histomorphometric study of bone healing around laminar implants in experimental diabetes. Implant Dent 9(2):143–149
Li X, Ma XY, Feng YF, Ma ZS, Wang J, Ma TC, Qi W, Lei W, Wang L (2015) Osseointegration of chitosan coated porous titanium alloy implant by reactive oxygen species-mediated activation of the PI3 K/AKT pathway under diabetic conditions. Biomaterials 36:44–54. doi:10.1016/j.biomaterials.2014.09.012
Koerdt S, Siebers J, Bloch W, Ristow O, Kuebler AC, Reuther T (2014) Role of oxidative and nitrosative stress in autogenous bone grafts to the mandible using guided bone regeneration and a deproteinized bovine bone material. J Cranio Maxillo Fac Surg 42(5):560–567. doi:10.1016/j.jcms.2013.07.027
Pradeep AR, Rao NS, Bajaj P, Kumari M (2013) Efficacy of subgingivally delivered simvastatin in the treatment of patients with type 2 diabetes and chronic periodontitis: a randomized double-masked controlled clinical trial. J Periodontol 84(1):24–31. doi:10.1902/jop.2012.110721
Yilmaz MI, Baykal Y, Kilic M, Sonmez A, Bulucu F, Aydin A, Sayal A, Kocar IH (2004) Effects of statins on oxidative stress. Biol Trace Elem Res 98(2):119–127. doi:10.1385/BTER:98:2:119
Acknowledgements
The authors are grateful to Prof. Réne Rizzoli, Prof. Olivier Bruyère, and Dr. Véronique Rabenda for their insightful comments and helpful suggestions for improvement of the manuscript.
Author information
Authors and Affiliations
Contributions
MB, BB, and FL designed the study. FL is the guarantor. MB, BB, and FL performed the literature search and collected the data. MB, BB, AA, ER, RR, and FL analysed and interpreted the data. AA is responsible for statistical analysis of the data. MB and FL drafted this manuscript. All authors revised the paper critically for intellectual content and approved the final version. All authors agree to be accountable for the work and ensure that any questions relating to the accuracy and integrity of the study are investigated and properly resolved.
Corresponding author
Ethics declarations
Conflicts of interest
Miljana Bacevic, Bozidar Brkovic, Adelin Albert, Eric Rompen, Regis P. Radermecker, and France Lambert declare that they have no conflicts of interest. No external funding was available for this study, except for the internal support of the authors’ institution.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Bacevic, M., Brkovic, B., Albert, A. et al. Does Oxidative Stress Play a Role in Altered Characteristics of Diabetic Bone? A Systematic Review. Calcif Tissue Int 101, 553–563 (2017). https://doi.org/10.1007/s00223-017-0327-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00223-017-0327-7